tìm giá trị của M để (2x^3 - 3x^2 + 2x + 7 + m) chia hết cho 2x + 1
a) m=5
b) m= -5
c) m= -9
d) m= -7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)
hay m=13
Để \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng sau :
\(2x^2-7\) | 1 | -1 | 5 | -5 |
x | \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) |
Vì x là số nguyên \(\Rightarrow x\in\left\{2;-2;1;-1\right\}\)
Vậy \(x\in\left\{2;-2;1;-1\right\}\) thì \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`
`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `
`M(x)= 4x^2-3x+6`
`b,` giá trị của `M(x)` tại `x=0`
`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`
`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`
Giá trị của `M(x)` tại `x=1`
`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`
`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`
`c,` Giá trị của `P(x)` là cái gì bạn nhỉ?
a: \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49+5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;-2;1;-1\right\}\)
b: \(2x^2+3x+3⋮2x-1\)
\(\Leftrightarrow2x^2-x+4x-2+5⋮2x-1\)
\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a: \(M=A+B=x^3-2x^2+1+2x^2-1=x^3\)
b: Thay x=1/2 vào M, ta được: \(M=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\)
c: Để M=0 thì x3=0
hay x=0
Chọn A