Cho △ABC nhọn,các đường cao BH cắt CK tại I.Chứng minh:
a)IB.IH=IC.IK
b)△IBS∼△IKH
MỌI NGƯỜI GIÚP MÌNH VỚI AHHH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng chứng minh được tam giác AKH đồng dạng tam giác ACB (g.g)
=> \(\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow AH.AC=AK.AB\) (*)
Vì tam giác ADC và tam giác AEB lần lượt nội tiếp các đường tròn đường kính AC và AB nên là các tam
giác vuông, đồng thời các đường cao tương ứng là DH và EK
Áp dụng hệ thức về cạnh trong tam giác vuông được \(AD^2=AH.AC\) , \(AE^2=AK.AB\)
Từ (*) ta suy ra \(AD^2=AE^2\Rightarrow AD=AE\)
Vậy tam giác ADE là tam giác cân tại A. (đpcm)
a: Xét ΔOKB vuông tại K và ΔOHC vuông tại H co
góc KOB=góc HOC
=>ΔOKB đồng dạng với ΔOHC
d: góc BKC=góc BHC=90 độ
=>BKHC nộitiếp
=>góc AKH=góc ACB
=>ΔAKH đồng dạng với ΔACB
=>\(\dfrac{S_{AKH}}{S_{ACB}}=\left(\dfrac{AK}{AC}\right)^2=\dfrac{1}{4}\)
=>\(S_{ABC}=32\left(cm^2\right)\)
Kẻ đường cao AJ, trực tâm của tam giác là I. Khi đó AKIH là tứ giác nội tiếp nên \(\widehat{AKH}=\widehat{AIH}\) (Cùng chắn cung AH)
Lại có \(\widehat{AIH}=\widehat{ACB}\) (Cùng phụ với \(\widehat{HAI}\) ). Vậy thì \(\widehat{AKH}=\widehat{ACB}\)
Vậy thì \(\Delta AKH\sim\Delta ACB\left(g-g\right)\Rightarrow\frac{AK}{AC}=\frac{AH}{AB}\Rightarrow AK.AB=AH.AC\left(1\right)\)
Xét tam giác vuông ABE, áp dụng hệ thức lượng ta có AE2 = AK.AB. Tương tự AD2 = AH.AC (2)
Từ (1) và (2) suy ra AE = AD (đpcm)
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn
Ta có: \(\widehat{ABH}+\widehat{BAC}=90^0\)(ΔAHB vuông tại H)
\(\widehat{ACK}+\widehat{BAC}=90^0\)(ΔAKC vuông tại K)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{ABD}=\widehat{ACE}\)
Xét (O) có
\(\widehat{ABD}\) là góc nội tiếp chắn cung AD
\(\widehat{ACE}\) là góc nội tiếp chắn cung AE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: \(sđ\stackrel\frown{AD}=sd\stackrel\frown{AE}\)
d, từ C kẻ đường thẳng // với PM cắt AE,AB tại Q và K
lấy H là trung điểm của BC
=>OH vuông góc với BC
H và E cùng nhìn OP dưới 1 góc 90 =>tứ giác OHEP nội tiếp =>góc MPH = góc OEH mà góc MPH = góc KCH (PM//CK) =>góc KCH= góc OEH =>tứ giác HQCE nội tiếp =>góc QHC = góc AEC mà góc AEC = góc ABC =>góc QHC=góc ABC =>QH//AB mà H là trung điểm BC
=>Q là trung điểm CK
Áp dụng định lí TA-let ta được tam giác AMO đồng dạng tam giác AKQ =>MO/KQ=AO/AQ
cmtt NO/CQ=AO/AQ mà CQ=KQ =>OM=ON
a) Xét ∆KIB và ∆HIC:
\(\widehat{IKB}=\widehat{IHC}=90^o\)
\(\widehat{KIB}=\widehat{HIC}\) (2 góc đối đỉnh)
=> ∆KIB~∆HIC (g.g)
=> \(\dfrac{IB}{IK}=\dfrac{IC}{IH}\)
<=> \(IB.IH=IC.IK\)
b) Theo câu a: ∆KIB~∆HIC
=> \(\dfrac{IK}{IH}=\dfrac{IB}{IC}\)
Xét ∆IBC và ∆IKH:
\(\widehat{BIC}=\widehat{KIH}\) (2 góc đối đỉnh)
\(\dfrac{IK}{IH}=\dfrac{IB}{IC}\) (cmt)
=> ∆IBC~∆IKH
a) Xét ΔKIB vuông tại K và ΔHIC vuông tại H có
\(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)
Do đó: ΔKIB\(\sim\)ΔHIC(g-g)
Suy ra: \(\dfrac{IK}{IH}=\dfrac{IB}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IB\cdot IH=IC\cdot IK\)(đpcm)