K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

\(\Leftrightarrow x+y-xy=0\\ \Leftrightarrow\left(y-1\right)-x\left(y-1\right)=-1\\ \Leftrightarrow\left(1-x\right)\left(y-1\right)=-1\\ \Leftrightarrow\left(x-1\right)\left(y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}y-1=1\\x-1=1\end{matrix}\right.\Leftrightarrow x=y=2\\ TH_2:\left\{{}\begin{matrix}x-1=-1\\y-1=-1\end{matrix}\right.\Leftrightarrow x=y=0\)

Vậy \(\left(x;y\right)=\left(2;2\right);\left(0;0\right)\)

25 tháng 2 2020

xy + 2x + 2y = - 16 

x.( y + 2 ) + 2.( y + 2 ) - 4 = - 16 

( y + 2 ).( x + 2 ) = - 12

=> ( y + 2 ) ; ( x + 2 ) \(\inƯ\left(-12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Ta có bảng : 

y + 2             - 1          1          - 2            2          - 3           3            - 4            4              - 6           6           -12       12

x + 2             12        -12          6            -6          4           -4              3            - 3               2            - 2            1         - 1 

y                    - 3          -1        -4           0            -5          1             -6           2                 -8            4            -14          10

x                     10         - 14      4            -8          2           -6            1              -5                0           -4               -1          -3

Vậy ...

x    

6 tháng 1 2023

\(\dfrac{x-1}{7}\) = \(\dfrac{3}{y+3}\) 

vì x; y  \(\in\) Z nên 3 \(⋮\) y + 3 ⇒  y + 3  \(\in\) { -3; -1; 1; 3} ⇒ y \(\in\) { -6; -4; -2; 0}

⇒ \(\dfrac{x-1}{7}\)  \(\in\) { -1; -3; 3; 1 } ⇒ x - 1 \(\in\) {-7; -21; 21; 7}

 ⇒ x \(\in\) { -6; -20; 22; 8}

Vậy các cặp số x, y nguyên thỏa mãn đề bài là:

(x; y) = ( -6; -6); (-20; -4); (22; -2); (8; 0)

17 tháng 6 2023

\(xy-2x+y=1\)

\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)

\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)

Ta có bảng sau:

\(x+1\) 1 -1
\(y-2\) -1 1
\(x\) 0 -2
\(y\) 1 3

Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.

 

11 tháng 11 2021

Bài 3: 

\(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-2\end{matrix}\right.\)

12 tháng 11 2021

bài 5 của tui đâu sao trả lời cứ làm 1 bài thôi vậykhocroi

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

16 tháng 2 2021

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

16 tháng 2 2021

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...