Tìm x biết:
a)\(\frac{2004}{2005}=\frac{1}{x}\)
b)\(\frac{1002}{2005}=\frac{1}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{2004}{2005}$
$2(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)})=\frac{2004}{2005}$
$\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)}= \frac{1002}{2005}$
$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$
$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$
$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$
$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$
$\Rightarrow x+1=4010$
$\Rightarrow x=4009$
Lời giải:
$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$
$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$
$2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}\right]=\frac{2004}{2005}$
$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$
$\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1002}{2005}$
$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$
$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$
$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$
$x+1=4010$
$x=4010-1=4009$
Ta có 1/3+1/6+1/10+....+1/x(x+1)=2004/2005
=>2/6+2/12+2/20+....+2/2x(x+1)=2004/2005
=>2[1/6+1/12+1/20+.......+1/2x(x+1)]=2004/2005
=> 2[1/2.3+1/3.4+1/4.5+.....+1/2x(x+1)] = 2004/2005
=>2[1/2 - 1/3+1/3 -1/4+1/4 - 1/5 +.....+1/2x - 1/(2x+2)] = 2004/2005
=>2[1/2 - 1/(2x+2)] = 2004/2005
=>x/(x+1) = 2004/2005 => x=2004
a, \(\frac{2004}{2005}\)=\(\frac{1}{x}\) =>2004 x= 1. 2005
=>2004 x= 2005
=> x = \(\frac{2005}{2004}\)
b, \(\frac{1002}{2005}\) = \(\frac{1}{x}\)
=> 1002 x = 1. 2005
=> 1002 x = 2005
=> x =\(\frac{2005}{1002}\)