tìm 3 số nguyên dương x và y, z biết x.y.z=x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát, ta giả sử \(0\le x\le y\le z\),
==> \(x+y+z\le z+z+z=3z\)==> \(xyz\le3z\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy=1 thì x=y=1 ==> z = 2+z vô lý (loại)
Nếu xy=2 ,do x=<y nên x=1,y=2 ==> 2z=3+z ==> z=3 (thoả mãn )
Nếu xy=3 do x=<y nên x=1;y=3 ==> 3z = 4+z==> z= 2 (Thoả mãn )
Vậy (x,y,z)=(1,2,3); (1,3,2);(2,1,3),(2,3,1); (3,1,2);(3,2,1)
Do các ẩn x, y, z có vai trò đẳng lập, nên có thể giả sử 1\(\le\)x\(\le\)y\(\le\)z
=> xyz = 1 + x + y + z\(\le\)3z + 1
Mình vội quá!!!
Viết tiếp nè,
xyz = 1 + x + y + z \(\le\)3z + 1\(\le\)4z (Do 1\(\le\)z)
Chia hai vế cho z được xy\(\le\)4 => xy \(\in\){ 1; 2; 3; 4}
Với xy = 1 thì x = y = 1 => z = 3 + z (vô lí)
Với xy = 2 thì x = 1; y = 2 => z = 4
Với xy = 3 thì x = 1; y = 3 => z = 2,5 (loại)
Với xy = 4 thì x = 1; y = 4 => z = 2
Vậy (x; y; z) = (1; 2; 4) và các hoán vị của chúng
Không tồn tại ba số nguyên dương trên vì
giả sử ba số x;y;z là số nguyên lẻ thì tích x.y.z là lẻ => x+y+z cũng lẻ => x+y+z+1 là chẵn
loại
Trường hợp 2: x;y;z là số nguyên dương chẵn thì trường hợp đây cũng loại
Trường hợp 3: một trong ba số có một số chẵn thì ta dễ thấy hai vế đìều chẵn nhưng vế trái lớn hơn vế phải nên loại
Trường hợp 4 : một trong ba số có một số lẻ ta phân tích như trường hợp 3 thì nhận kết là loại
lưu ý các trường hợp trên các số nguyên x;y;z có thể bằng nhau
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Do \(x,y,z\)có vai trò như nhau nên không mất tính tổng quát, ta giả sử \(0< x\le y\le z\).
Ta có: \(xyz=x+y+z\le z+z+z=3z\Rightarrow xy\le3\).
- \(xy=1\Rightarrow x=y=1\)ta có:
\(1.1.z=1+1+z\Leftrightarrow0z=2\)(vô nghiệm)
- \(xy=2\Rightarrow x=1,y=2\)ta có:
\(1.2.z=1+2+z\Leftrightarrow z=3\).
- \(xy=3\Rightarrow x=1,y=3\)ta có:
\(1.3.z=1+3+z\Leftrightarrow z=2\)(loại).
Vậy phương trình có nghiệm \(\left(x,y,z\right)=\left(1,2,3\right)\)và các hoán vị.