Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\)Chứng minh rằng \(a+b+c-abc<4\)
Giải giúp mình nhé, đúng mình tick cho ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$
$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$
Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$
$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Áp dụng bất đẳng thức Bunhiacopxki ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)\(=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Theo một bất đẳng thức quen thuộc ta có \(abc\left(a+b+c\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\)
Từ đó ta được \(abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}{3}\)\(\le\frac{\left(a^2+b^2+c^2+ab+bc+ca+ab+bc+ca\right)^3}{3^4}=\frac{\left(a+b+c\right)^6}{3^4}\)
Do đó ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le\frac{\left(a+b+c\right)^6}{3^4}\)hay \(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\le\frac{\left(a+b+c\right)^3}{3^2}\)(*)
Dễ dàng chứng minh được \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)(**)
Từ (*) và (**) suy ra \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)
Xét hiệu : \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b>0\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
Áp dụng BĐT AM-GM :
\(a^3+b^3+2c^3\ge ab\left(a+b\right)+2c^3\ge2\sqrt{ab\left(a+b\right).2c^3}=2\sqrt{4c^2\left(a+b\right)}\)
\(=4c\sqrt{a+b}\)
Hoàn toàn tương tự
\(a^3+2b^3+c^3\ge4b\sqrt{a+c};2a^3+b^3+c^3\ge4a\sqrt{b+c}\)
Cộng thao vế bất đẳng thức vừa thu được
\(\Rightarrow a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\sqrt[3]{2}\)
Chúc bạn học tốt !!!
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
http://diendantoanhoc.net/topic/104095-cmr-a2b2c2abc-geq-4/
vô đó,,ta sẽ có 3+abc>=4 => abc>=1 =>-abc<1 => dùng vs cái trên => dpcm
áp dụng bđt phụ
a2+b2+c2>= 1/3(a+b+c)2
=> a+b+c <=3
chịu thôi