K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{a}{b}=\dfrac{bk}{b}=k\)\(\left(1\right)\)

\(VP=\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\d=ck\end{matrix}\right.\)

\(VT=\dfrac{a+b}{d}=\dfrac{bk+b}{d}=\dfrac{b\left(k+1\right)}{d}=\dfrac{k+1}{d}\left(1\right)\)

\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=\dfrac{k+1}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

30 tháng 3 2016

a)a<b (1)

 c<d (2)

Cộng từng vế các BĐT (1) và (2)

=>a+c<b+d (đpcm)

câu b) tương tự,dùng phép nhân

21 tháng 2 2021

a) Xét tứ giác MAOB có:

\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)

=> Tứ giác MAOB nội tiếp (dhnb)

b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)

\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng)    (1)

Có: \(AC^2=\left(2R\right)^2=4R^2\)    (2) 

Từ (1) và (2) suy ra \(AB.AD=4R^2\)

 

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AC là đường kính(gt)

Do đó: ΔABC vuông tại B(Định lí)

⇔CB⊥AB tại B

⇔CB⊥AD tại B

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:

\(AB\cdot AD=AC^2\)

\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)

30 tháng 4 2015

có ai biết trả lời  giúp mình với

 

30 tháng 4 2015

. Ta có BD=BA nên tg ABD cân tại B => góc BAD= góc BDA

b.AB//DK vì góc A=góc K (hai cặp góc đồng vị bằng nhau) 

aAD là cạch chung 

góc BAD=góc ADK (như đã chứng minh ở trên)

K=H=90o

=> tg AHD= tg ADK (cạnh huyền - góc nhọn)