\(I= \int_{-2}^2\left(\sqrt{20-x^2}-x^2\right)dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
Lời giải:
\(I=\int ^{1}_{-1}\ln (x+\sqrt{1+x^2})dx\)
Chuyển $x\to -x$ thì:
\(I=\int ^{-1}_{1}\ln (-x+\sqrt{1+x^2})d(-x)\)
\(=-\int ^{-1}_{1}\ln (-x+\sqrt{1+x^2})dx=\int ^{1}_{-1}\ln (-x+\sqrt{1+x^2})dx\)
\(2I=\int ^{1}_{-1}[\ln (x+\sqrt{1+x^2})+\ln (-x+\sqrt{1+x^2})]dx\)
\(=\int^{1}_{-1}\ln [(x^2+1)-x^2]dx=\int^{1}_{-1}\ln 1dx=\int^{1}_{-1}0dx=0\)
$\Rightarrow I=0$
lâu ko làm tích phân cũng quên béng đi rồi những câu này cũng không khó chú ý 1 chút là làm đc ak ,
trong cái căn bậc 2 nhé 3+2x-x^2= -((x-1)^2+2)) sau do dat x-1=a nen x+1=a+2 thay vap bieu tu lam binh thuong la ra thoi ak
Dễ dàng nhận thấy hàm dưới dấu tích phân dương
Đặt \(I=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}+\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}=A+B\)
Xét \(A=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) ; chọn \(g\left(x\right)=\frac{1}{\left(x+2\right)^{\frac{1}{2}}}\)
\(\Rightarrow\lim\limits_{x\rightarrow-2^+}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{\sqrt{5}}\) hữu hạn \(\Rightarrow\int\limits^0_{-2}f\left(x\right)dx\) và \(\int\limits^0_{-2}g\left(x\right)dx\) cùng hội tụ hoặc phân kỳ
Mà \(\int\limits^0_{-2}\frac{dx}{\left(x+2\right)^{\frac{1}{2}}}\) có \(\alpha=\frac{1}{2}< 1\) nên hội tụ \(\Rightarrow A\) hội tụ
Tương tự: xét \(B=\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) chọn \(g\left(x\right)=\frac{1}{\left(7-x\right)^{\frac{1}{2}}}\Rightarrow\lim\limits_{x\rightarrow7^-}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{3}\) hữu hạn
\(\Rightarrow\int\limits^7_0f\left(x\right)dx\) và \(\int\limits^7_0g\left(x\right)dx\) cùng bản chất
\(\alpha=\frac{1}{2}< 1\Rightarrow\int\limits^7_0g\left(x\right)dx\) hội tụ \(\Rightarrow B\) hội tụ
\(\Rightarrow I=A+B\) hội tụ
Tìm theo pp Lagrange bị 1 điểm cực trị có \(B^2-AC=0\) ko kết luận được, do đó nên đưa về cực trị của hàm 1 biến
\(\left(x+2\right)^2+\left(y+2\right)^2=98\Leftrightarrow\left(\frac{x+2}{7\sqrt{2}}\right)^2+\left(\frac{y+2}{7\sqrt{2}}\right)^2=1\)
Đặt \(\left\{{}\begin{matrix}\frac{x+2}{7\sqrt{2}}=sint\\\frac{y+2}{7\sqrt{2}}=cost\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\sqrt{2}sint-2\\y=7\sqrt{2}cost-2\end{matrix}\right.\)
\(\Rightarrow z=98sint.cost+35\sqrt{2}\left(sint+cost\right)-24\)
Đặt \(\sqrt{2}\left(sint+cost\right)=a\Rightarrow-2\le a\le2\)
\(\Rightarrow sint.cost=\frac{a^2}{4}-\frac{1}{2}\)
\(\Rightarrow z=\frac{49}{2}a^2+35a-73\) với \(a\in\left[-2;2\right]\)
\(z'_a=49a+35=0\Rightarrow a=-\frac{5}{7}\)
\(z\left(-2\right)=-45;z\left(2\right)=95;z\left(-\frac{5}{7}\right)=-\frac{171}{2}\)
\(\Rightarrow z_{min}=-\frac{171}{2}\) khi \(a=-\frac{5}{7}\) ; \(z_{max}=95\) khi \(a=2\)
1)
Ta có:
\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)
\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)
\(=3x+\int d(\cot x)=3x+\cot x+c\)
\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)
3)
Xét \(\int (2\tan x-3\cot x)^2dx\)
\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)
\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)
\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)
\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)
\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)
\(=4\tan x-9\cot x-25x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)
2)
Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)
\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)
\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
\(I_1=\int\limits^2_0f\left(2x\right)dx\)
Đặt \(2x=t\Rightarrow dx=\frac{dt}{2}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I_1=\int\limits^4_0f\left(t\right).\frac{dt}{2}=\frac{1}{2}\int\limits^4_0f\left(t\right)dt=\frac{1}{2}\int\limits^4_0f\left(x\right)dx=\frac{1}{2}.2018=1009\)
\(I_2=\int\limits^2_{-2}f\left(2-x\right)dx\)
Đặt \(2-x=t\Rightarrow dx=-dt\); \(\left\{{}\begin{matrix}x=-2\Rightarrow t=4\\x=2\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I_2=\int\limits^0_4f\left(t\right).\left(-dt\right)=\int\limits^4_0f\left(t\right)dt=\int\limits^4_0f\left(x\right)dx=2018\)
\(\Rightarrow I=I_1+I_2=1009+2018=3027\)
Áp dụng nguyên hàm cơ bản: \(\int\sqrt{a^2-x^2}dx=\dfrac{a\sqrt{a^2-x^2}}{2}+\dfrac{a^2}{2}arcsin\dfrac{x}{2}+C\)
\(I=\left(\dfrac{x\sqrt{20-x^2}}{2}+10arcsin\dfrac{x}{2\sqrt{5}}\right)|^2_{-2}-\dfrac{1}{3}x^3|^2_{-2}=...\)
\(I=\int\sqrt{20-x^2}dx-\int x^2dx\)
Xet \(I_1=\int\sqrt{20-x^2}dx\)
\(x=\sqrt{20}\sin t\left(-\dfrac{\pi}{2}\le t\le\dfrac{\pi}{2}\right)\Rightarrow dx=\sqrt{20}\cos tdt\)
\(\Rightarrow I_1=\int\sqrt{20\cos^2t}.\sqrt{20}\cos tdt=20\int\cos^2t.dt=10\int dt+10\int\cos2t.dt=10t+5\sin2t+C\)
\(\Rightarrow I=10arc\sin\left(\dfrac{x}{\sqrt{20}}\right)+5\sin\left[2.arc\sin\left(\dfrac{x}{\sqrt{20}}\right)\right]-\dfrac{1}{3}x^3+C\)
P/s: Bạn tự thay cận vô ạ