nếu xếp 4 học sinh trên 1 ghế thì 5 học sinh không chỗ . nếu xếp 5 học sinh trên 1 ghế thì thừa 1 ghế . tính số học sinh và số ghế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số ghế trong phòng học là x (ghế), số học sinh của lớp là y (học sinh). Điều kiện x, y ∈N*
Nếu xếp mỗi ghế 3 học sinh thì 6 học sinh không có chỗ, ta có phương trình: 3x + 6 = y
Nếu xếp mỗi ghế 4 học sinh thì thừa một ghế, ta có phương trình: (x – 1)4=y
Ta có hệ phương trình:
Giá trị của x và y thỏa điều kiện bài toán.
Vậy trong phòng học có 10 ghế và 36 học sinh.
Lời giải:
Giả sử trong phòng học có $a$ học sinh.
Theo bài ra, nếu xếp mỗi bộ bàn ghế 3 hs thì số bộ bàn ghế là:
$\frac{a-4}{3}$ (bộ)
Nếu xếp mỗi bộ bàn ghế 4 học sinh thì số bộ bàn ghế là:
$\frac{a-2}{4}$ (bộ)
Số bộ bàn ghế không đổi nên: $\frac{a-4}{3}=\frac{a-2}{4}$
$\Rightarrow a=10$ (hs)
Số bộ bàn ghế là: $\frac{a-2}{4}=\frac{10-2}{4}=2$ (bộ)
Đặt số ghế là x; số học sinh là y ta có hệ phương trình
\(\hept{\begin{cases}4x=y-6\\\frac{y}{5}=x-1\end{cases}}\)
Bạn tự giải nốt hệ nhé
gọi x (ghế) là số ghế (x lớn hơn 0)
y là (hs)là số hs (y thuộc n sao )
theo đề bài ta có 4x+5 =y
5(x-1)=y
X=10
y=45
mong bạn ủng hộ mk ne