chứng minh rằng nếu: U+2/u-2=v+3/v-3 thì u/3=v/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Rightarrow\left(u+2\right).\left(v-3\right)=\left(u-2\right).\left(v+3\right)\)
\(\Rightarrow u\left(v-3\right)+2\left(v-3\right)=u\left(v+3\right)-2\left(v+3\right)\)
\(\Rightarrow uv-3u+2v-6=uv+3u-2v-6\Rightarrow uv-3u+2v=uv+3u-2v\)
\(\Rightarrow-3u+2v=3u-2v\Rightarrow2v-3u=3u-2v\Rightarrow2v+2v=3u+3u\Rightarrow4v=6u\Rightarrow\frac{u}{3}=\frac{v}{2}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
<=> \(uv+2v-3u-6=uv-2v+3u-6\)
<=> \(2v-3u=3u-2v\)
<=> \(2v+2v=3u+3u\)
<=> \(4v=6u\)
<=> \(2v=3u\)
<=> \(\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)
Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.
Mình lí luận ngược nha :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
mình có sửa lại đề 1 chút!
đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
đặt \(u=a^4;v=b^6\)(a,b>0) ta có
\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)
vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)
từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)
vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)
\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)
nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)
do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)
tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý
Giải:
Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)
\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)
Vậy \(\frac{u}{2}=\frac{v}{3}\)
\(A=mn\left(m^2-n^2\right)\) (1)
\(A=mn\left(n-m\right)\left(n+m\right)\)(1)
1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}
2.-Với A dạng (2)
2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2
2.1- nếu n và m lẻ thì (n+m) chia hết cho 2
Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm
xem lại đề bạn ơi. nếu( u+2v+1)+(2u-2v+2)=3u+3 và chưa chắc cái này đã lẻ