Cho a,b,c,d \(\in\) N* thỏa mãn \(\frac{a}{b}\)<\(\frac{c}{d}\).
Chững minh rằng \(\frac{2014a+c}{2014b+d}\)< \(\frac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là
a/b=2018a/2018b
Vì a/b<c/d
=>2018a/2018b<c/d
=>2018a+c/2018b+d<c+d
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)
Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :
\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Vậy...
Vì \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)
\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Mình chắc chắn 100% luôn. Mong các bạn .
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)
Lời giải:
Do $\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{ad-bc}{bd}<0$
$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)
Xét hiệu $\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{(2014b+d)d}$
$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$
$\Rightarrow \frac{2014a+c}{2014b+d}< \frac{c}{d}$