Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath
viết dạng hệ cho dẽ nhìn
a^b = b^c (1)
b^c = c^d (2)
c^d = d^e (3)
d^e = e^a(4)
e^a=a^b(5)
*********dùng pp phải chứng
*******************
giả sử có 5 số tự nhiên thỏa mãn trên
không thay đổi ý nghia giả sử
a>=b>=c>=d>e>=1
*****hàm mũ lũy thừa cơ số 1 rất đặc biệt khử cái này trước*******
nếu e=1
=> a>=b>=c>=d>=2 (*)
từ (5) => a=1 hoặc b=0 => không thỏa mãn (*)=> e<>1
ok
giờ có
a>=b>=c>=d>e>=2
từ(3)
c^d = d^e (3)
c>=d=> d<=e mâu thuẫn d>e
các số a,b,c,d,e có thể hoán đổi vị trí cho nhau
=>ít nhất có một phương trình không thỏa mãn
=> dpcm
Giả sử \(a\ne b\). Xét TH \(a< b\)thì
\(b^c=a^b< b^b\Rightarrow b>c\)
\(c^d=b^c>c^c\Rightarrow c< d\)
\(d^e=c^d< d^d\Rightarrow e< d\)
\(e^a=d^e>e^e\Rightarrow a>e\)
\(e^a=a^b>e^b\Rightarrow a>b\)
Trái với điều \(a< b\)nên \(a=b\)
Từ đó, ta suy ra được \(a=b=c=d=e\)
ab = bc = cd = de = ed
Ta có: de = ed
=> d và e bằng nhau.
Lại có: cd = ed
=> c và e bằng nhau
=> c,d,e bằng nhau
=> bc = $bd$bd(Vì c =d)
Mà bc = cd = de = ed
Nên bd= cd = de = ed
=> b,c,d,e bằng nhau.
Tiếp tục có: ab = bc = cd = de = ed
bi roi nha
Giả sử a>b( trường hợp a<b chứng minh tương tự). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số( là số tự nhiên) khác nhauthì lũy thừa nào có cơ số nhỏ hơn sẽ có số mũ lớn hơn. Xong tiếp tục giải là ra