Bài 1: tính hợp lí
a)\(\frac{6}{7}+\frac{1}{7}\times\frac{2}{7}+\frac{1}{7}\times\frac{5}{7}\)
b)\(\frac{1}{4}-\frac{-7}{4}\times\frac{15}{35}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)
\(=\frac{8+9+10}{12}\)
\(=\frac{27}{12}=\frac{9}{4}\)
b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)
\(=\frac{45-14+20}{24}\)
\(=\frac{51}{24}=\frac{17}{8}\)
2)
a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)
\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)
\(=1+\frac{7}{13}+\frac{1}{7}\)
\(=\frac{20}{13}+\frac{1}{7}\)
\(=\frac{153}{91}\)
Tí tớ trả lời tiếp
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
a) \(-\frac{1}{4}.13\frac{9}{11}-0,25.6\frac{2}{11}\)
\(=-\frac{1}{4}.13\frac{9}{11}-\frac{1}{4}.6\frac{2}{11}\)
\(=-\frac{1}{4}\left(13\frac{9}{11}+6\frac{2}{11}\right)\)
\(=-\frac{1}{4}.20\)
\(=-5\)
b) \(B=\frac{-5}{6}.\frac{4}{19}+\frac{-7}{12}.\frac{4}{19}-\frac{40}{57}\)
\(=\frac{4}{19}\left(\frac{-5}{6}+\frac{-7}{12}\right)-\frac{40}{57}\)
\(=\frac{4}{19}.\frac{-17}{12}-\frac{40}{57}\)
\(=\frac{-17}{57}-\frac{40}{57}\)
\(=-1\)
c) \(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{3}{7}.\frac{9}{26}-\frac{1}{2}.\frac{1}{7}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{1}{7}\left(3.\frac{9}{26}-\frac{1}{2}.\frac{1}{13}-1\right)\)
\(=\frac{1}{7}.0\)
\(=0\)
d) \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
\(=\left(\frac{4}{9}+6\frac{5}{9}\right):\left(-\frac{1}{7}\right)\)
\(=7:\left(-\frac{1}{7}\right)\)
\(=-49\)
a) \(\frac{16}{35}+\frac{8}{35}=\frac{24}{35}\)
b)\(\frac{160}{77}-\frac{28}{77}=\frac{132}{77}=\frac{12}{1}=12\)
c)\(\frac{72}{180}=\frac{18}{45}\)
d) \(\frac{90}{360}=\frac{1}{4}\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
\(\frac{1}{5}\cdot\frac{1}{7}+\frac{4}{5}+\frac{1}{5}\cdot\frac{12}{7}-1-\frac{1}{5}\cdot\frac{6}{7}\)
\(=\frac{1}{5}\cdot\left(\frac{1}{7}+\frac{12}{7}-\frac{6}{7}\right)-\left(1-\frac{4}{5}\right)\)
\(=\frac{1}{5}.1-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}=0\)
a/ \(\frac{6}{7}+\frac{1}{7}\times\frac{2}{7}+\frac{1}{7}\times\frac{5}{7}=\frac{6}{7}+\frac{1}{7}\times\left(\frac{2}{7}+\frac{5}{7}\right)=\frac{6}{7}+\frac{1}{7}\times1=\frac{6}{7}+\frac{1}{7}=\frac{7}{7}=1\)
b/ \(\frac{1}{4}-\frac{-7}{4}\times\frac{15}{35}=\frac{1}{4}+\frac{7}{4}\times\frac{3}{7}=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(\frac{6}{7}+\frac{2}{14}+\frac{5}{14}=\frac{12}{14}+\frac{2}{14}+\frac{5}{14}=\frac{19}{17}\)câu a
câu b \(\frac{1}{4}-\frac{-105}{140}=\frac{35}{140}-\frac{-105}{140}=\frac{140}{140}=1\)