K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

1+2)Bn tự tham khảo 

3,

S R N I

\(i=90^o-40^o=50^o\)

\(i=i'\Leftrightarrow i'=50^o\)

4,

N M R I

5,

S R N I

\(\Rightarrow i=120^o:2=60^o\)

16 tháng 11 2021

Cảm ơn bạn :3 <3

a: ΔAMN vuông tại A

mà AI là đường trung tuyến 

nên AI=IM=IN=MN/2

=>I là tâm đường tròn ngoại tiếp ΔAMN

b: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

20 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AM là đường cao

nên \(\left\{{}\begin{matrix}AB\cdot AC=AM\cdot BC\\AB^2=BM\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AM=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\\BM=\dfrac{12^2}{20}=7.2\left(cm\right)\end{matrix}\right.\)

c: ΔABM vuông tại M có ME là đường cao

nên \(AE\cdot AB=AM^2\)

ΔAMC vuông tại M

=>\(MA^2+MC^2=AC^2\)

=>\(MA^2=AC^2-MC^2\)

=>\(AE\cdot AB=AC^2-MC^2\)

16 tháng 11 2021

a, song song với gương

A B A' B'

b, vuông góc với gương

A' B' A B

11)Bn share in chỗ nào bn muốn

12,

a,

S R N N' R'

16 tháng 11 2021

12,

a+b,nha bn! 

16 tháng 11 2021

6:

S R N I

\(i=90^o-40^o=50^o\)

\(i=i'\Leftrightarrow i'=50^o\)

7:

8:

A B A' B'

9:

C1:

S S'

C2:

S S' N N' R R' I I'

16 tháng 11 2021

Cảm ơn bạn :3 <3

NV
13 tháng 1

5.

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\)

Pt có 2 nghiệm pb khi \(\left(m-2\right)^2>0\Rightarrow m\ne2\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=x_1+x_2\)

\(\Leftrightarrow m^2-2\left(m-1\right)=m\)

\(\Leftrightarrow m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\left(loại\right)\end{matrix}\right.\)

1.

\(\Delta=9+4m>0\Rightarrow m>-\dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-m\end{matrix}\right.\)

\(5x_1+5x_2=1-\left(x_1x_2\right)^2\)

\(\Leftrightarrow5\left(x_1+x_2\right)=1-\left(x_1x_2\right)^2\)

\(\Leftrightarrow5.\left(-3\right)=1-\left(-m\right)^2\)

\(\Leftrightarrow m^2=16\Rightarrow\left[{}\begin{matrix}m=4\\m=-4< -\dfrac{9}{4}\left(loại\right)\end{matrix}\right.\)

NV
13 tháng 1

2.

\(\Delta=\left(2m+1\right)^2-4\left(m^2+1\right)=4m-3>0\Rightarrow m>\dfrac{3}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+1\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)

\(\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)=11\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=11\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)=11\)

\(\Leftrightarrow2m^2+8m-10=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-5< \dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

\(\dfrac{S_{AOD}}{S_{DOC}}=\dfrac{10}{20}=\dfrac{1}{2}\)

=>\(AO=\dfrac{1}{2}CO\)

Vì ABCD là hình thang có hai đáy là AB và CD

và AC cắt BD tại O

nên \(S_{AOD}=S_{BOC}\)

=>\(S_{BOC}=10\left(cm^2\right)\)

\(AO=\dfrac{1}{2}OC\)

=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}=5\left(cm^2\right)\)

\(S_{ABCD}=S_{ABO}+S_{BOC}+S_{DOC}+S_{AOD}\)

\(=5+10+20+10=45\left(cm^2\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 1

Bài 3:

Nếu đáy lớn được tăng thêm 5 cm thì diện tích sẽ tăng một phần bằng 5 x chiều cao : 2

Vậy chiều cao của hình thang là:
$20\times 2:5=2$ (m) 

Diện tích hình thang ban đầu là:

$50\times 2:2=50$ (m2)

a: A(1;-3); B(2;4); C(-1;2)

\(AB=\sqrt{\left(2-1\right)^2+\left(4+3\right)^2}=5\sqrt{2}\)

\(BC=\sqrt{\left(-1-2\right)^2+\left(2-4\right)^2}=\sqrt{13}\)

\(AC=\sqrt{\left(-1-1\right)^2+\left(2+3\right)^2}=\sqrt{29}\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+BC+AC=5\sqrt{2}+\sqrt{13}+\sqrt{29}\)

Xét ΔABC có

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(=\dfrac{50+29-13}{2\cdot5\sqrt{2}\cdot\sqrt{29}}=\dfrac{33}{5\sqrt{58}}\)

\(sin^2A+cos^2A=1\)

=>\(sin^2A=1-\left(\dfrac{33}{5\sqrt{58}}\right)^2=\dfrac{361}{1450}\)

=>\(sinA=\sqrt{\dfrac{361}{1450}}\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot\sqrt{\dfrac{361}{1450}\cdot50\cdot29}=\dfrac{19}{2}\)

b: Gọi (d): y=ax+b là phương trình đường thẳng AB

(d) đi qua A(1;-3) và B(2;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=-3\\2a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a=-7\\a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-3-a=-3-7=-10\end{matrix}\right.\)

Vậy: (d): y=7x-10

c: Gọi (d1):y=ax+b là phương trình đường thẳng cần tìm

Vì (d1) vuông góc AB nên \(a\cdot7=-1\)

=>\(a=-\dfrac{1}{7}\)

=>(d1): \(y=-\dfrac{1}{7}x+b\)

Thay x=-1 và y=2 vào (d1), ta được:

\(b+\dfrac{1}{7}=2\)

=>\(b=2-\dfrac{1}{7}=\dfrac{13}{7}\)

Vậy: (d1): \(y=-\dfrac{1}{7}x+\dfrac{13}{7}\)

23 tháng 12 2023

\(\Leftrightarrow x^2-2x+1-1=0\)

\(\Leftrightarrow\left(x-1\right)^2=1\Rightarrow\left(x-1\right)=\pm1\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)