Cho tam giác ABC,AB=4,AC=4,5.Trên cạnh AB và cạnh AC lấy M và N sao cho AM=AN=3. Gọi O là giao điểm của BN và CM. Tính OB/ON+OC/OM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Menelaus trong tam giác ABN ta có :
MAMB.OBON.CNCA=131.OBON.1,54,5=1
⇒OBON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NANC.OCOM.BMBA=1
31,5.OCOM.14=1
OCOM=2
Vậy OBON+OCOM=3
Áp dụng định lí Mê-nê-la-uýt trong tam giác ABN ta có:
MA/MB.OB/ON.CN/CA=1
3/1.OB/ON.1,5/4,5=1
⇒OB/ON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NA/NC.OC/OM.BM/BA=1
3/1,5.OC/OM.1/4=1
OC/OM=2
Vậy OB/ON+OC/OM=3
Dựng đường cao BQ của tam giác BOM ứng với cạnh CM.
Dựng đường cao ND của tam giác MCN ứng với cạnh CM
Ta có:
SBOM/SMON = OB/ON (Vì hai tam giác có chung đường cao hạ từ đỉnh M xuống đáy BN nên tỉ số diện tích hai tam giác là tỉ số hai cạnh đáy tương ứng)
SBOM /SMON = BQ/ND (Vì hai tam giác có chung cạnh đáy MO nên tỉ số diện tích của hai tam giác là tỉ số hai đường cao tương ứng)
Tương tự ta có: SBCM/SCMN = BQ/ND
Từ các lập luận trên ta có: OB/ON = SBCM/SCMN
BM = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB
SBCM = \(\dfrac{2}{3}\)SABC (Vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM =\(\dfrac{2}{3}\)AB)
CN = AC - AN = AC - \(\dfrac{4}{5}\)AC = \(\dfrac{1}{5}\)AC
SCMN = \(\dfrac{1}{5}\)SACM (Vì hai tam giác có chung hạ từ đỉnh M xuống đáy Ac và CN= \(\dfrac{1}{5}\)AC)
SACM = \(\dfrac{1}{3}\)SABC (Vì hai tam giác có chung đường cao hạ từ đỉnh C xuống đáy AB và AM = \(\dfrac{1}{3}\)AC)
⇒SCMN = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{1}{3}\)SABC = \(\dfrac{1}{15}\)SABC
SBCM/SCMN = \(\dfrac{2}{3}\): \(\dfrac{1}{15}\) = \(\dfrac{10}{1}\)
Đáp số: \(\dfrac{10}{1}\)
Bạn ơi bạn làm được bài này chưa vậy??? Nếu bạn giải được rồi thì cho mình xem với, mình đang cần gấp. Cảm ơn bạn!
Bạn tự vẽ hình nha
Áp dụng định lí Mê-nê-la-uýt trong \(\Delta\) ABN ta có:
\(\frac{MA}{MB}.\frac{OB}{ON}.\frac{CN}{CA}=1\)
\(\frac{3}{1}.\frac{OB}{ON}.\frac{1,5}{4,5}=1\)
\(\Rightarrow\frac{OB}{ON}=1\)
Áp dụng định lí Mê-nê-la-uýt trong \(\Delta\) ACM ta có:
\(\frac{NA}{NC}.\frac{OC}{OM}.\frac{BM}{BA}=1\)
\(\frac{3}{1,5}.\frac{OC}{OM}.\frac{1}{4}=1\)
\(\Rightarrow\frac{OC}{OM}=2\)
\(\Rightarrow\frac{OB}{OM}+\frac{OC}{OM}=1+2=3\)