K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

chịu

thôi

22 tháng 12 2021

Chịu

tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄

23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

15 tháng 6 2018

- Bất đẳng thức chứa dấu <: -3 < (-2) + 1

- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3

- Bất đẳng thức chứa dấu >: 4 > (-1) + 3

- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4

8 tháng 5 2021

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

22 tháng 4 2017

- Bất đẳng thức chứa dấu <: -3 < (-2) + 1

- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3

- Bất đẳng thức chứa dấu >: 4 > (-1) + 3

- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4

26 tháng 4 2017

@gv

Các bất đẳng thức nổi tiếng

  • Bất đẳng thức Bunyakovsky.
  • Bất đẳng thức Azuma.
  • Bất đẳng thức Bernoulli.
  • Bất đẳng thức Boole.
  • Bất đẳng thức Cauchy-Schwarz.
  • Bất đẳng thức cộng Chebyshev.
  • Bất đẳng thức Chernoff.
  • Bất đẳng thức Cramer-Rao
  • :333
12 tháng 12 2021

Tôi đã học :

-bất đảng thức cô-si

-bất đảng thức bunyakovsky

về phần ví dụ thì tui chịu nha

Quên hết rùi

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

9 tháng 3 2017

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.