tìm các số tự nhiên xy biết (x,y)=1 và x+y/x2+y2 = 7/25
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)\left(x-y\right)=7\)
Vì \(x+y+x-y=2x\) chẵn
⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)
⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)
mà 7 không chia hết cho 4
⇒ Không tồn tại x,y
a) Vì 7 = 1.7 mà x+y > x-y
=> x+y = 7 và x-y = 1
Bạn đưa về bài toán tổng hiệu nhé!
b) x2 + y + x + xy = 11
x2 + xy + y + x = 11
x(x+y) + (y + x) = 11
(x + y) . ( x+1) = 11
Vì 11 = 1.11
=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1
+) Với x+1 = 11 => x=10
Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)
+) Với x+1 = 1 => x=0
Mà x+y=11 => y= 11-0=11 ( thỏa mãn)
Vậy x=0 và y=11
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
a/ (x+5)(y-3)=15
=> \(y-3=\frac{15}{x+5}\) => \(y=3+\frac{15}{x+5}\)
Để y là số tự nhiên thì x+5 phải là ước của 15
=> x+5={1; 3; 5; 15; -15; -5; -3; -1} => x={-4; -2; 0; 10; -20; -10; -8; -6}
Do x thuộc N => Chọn x={0; 10}
=> y={6; 4}
Đáp số: Các cặp số x, y thỏa mãn là: {0; 6}; {10; 4}
ta có ( x+4)=y(x+1)
\(\Leftrightarrow\) \(x+4-xy-y=0\)
\(\Leftrightarrow x\left(1-y\right)-\left(y-1\right)=-3\)
\(\Leftrightarrow x\left(1-y\right)+\left(1-y\right)=-3\)
\(\Leftrightarrow\left(x+1\right)\left(1-y\right)=-3\)
ĐẾN ĐÂY LẬP BẢNG LÀ RA