Cho tam giác biết độ dài 3 cạnh tỉ lệ với 3 4 5 và chu vi tam giác là 60cm. Tính độ dài 3 cạnh của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)
Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5
Nên:\(\frac{x}{3}\)=5 suy ra x=15
\(\frac{y}{4}\) =5 suy ra y=20
\(\frac{z}{5}\)=5 suy ra z=25
Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.
Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)
Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5
Nên:\(\frac{x}{3}\)=5 suy ra x=15
\(\frac{y}{4}\) =5 suy ra y=20
\(\frac{z}{5}\)=5 suy ra z=25
Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.
Chúc bạn học tốt!Có j sai các bạn chỉnh giúp mik nha!-^-
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi 3 cạnh tam giác lần lượt là : a, b , c
a:b:c=3:4:5 hay
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{48}{12}=4\)
=> a = 4 . 3 = 12
=> b = 4 . 4 = 16
=> c = 5 . 4 = 20
vậy 3 cạnh có số đo lần lượt là : 12 cm , 16 cm , 20 cm
Gọi 3 cạnh tam giác đó là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{12}{12}=1\)
\(\dfrac{a}{3}=1\Rightarrow a=3\\ \dfrac{b}{4}=1\Rightarrow b=4\\ \dfrac{c}{5}=1\Rightarrow c=5\)
Gọi 3 cạnh của tam giác lần lượt là: a, b,c
Ta có:
a,b,c tỉ lệ với 3,4,5
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{12}{12}=1\\ \Rightarrow a=3;b=4;c=5\)
a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60
áp dụng tích chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
\(\frac{a}{3}=5=>a=15\)
\(\frac{b}{4}=5=>b=20\)
\(\frac{c}{5}=5=>c=25\)
a, Gọi 3 cạnh của tam giác lần lượt là x, y, t
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)
\(\frac{x}{3}=5\Rightarrow a=15\)
\(\frac{y}{4}=5\Rightarrow a=20\)
\(\frac{t}{5}=5\Rightarrow a=25\)
Gọi 3 cạnh của tam giác lần lượt là \(a, b, c ( cm) (a,b,c > 0)\)
Theo đề bài 3 cạnh của tam giác tỉ lệ với 3, 4, 5 nên ta có tỉ số \(a : b : c = 3 : 4 : 5.\)
Và chu vi tam giác là 60cm nên ta có:\( a + b + c = 60.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{12}} = \dfrac{{60}}{{12}} = 5\)
\( \Rightarrow a = 3.5=15 ; b = 4.5=20 ; c = 5.5=25.\)
Vậy 3 cạnh của tam giác có độ dài là \(15cm, 20cm, 25cm.\)
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c ta có
a/3=b/5=c/7 và a+b+c=150
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{150}{15}=10\)
=> a=3.10=30
b=5.10=50
c=7.10=70
Gọi x, y, z là độ dài ba cạnh tam giác đó
Theo đề bài, ta có:
x/3 = y/5 = z/7 = x+y+z/3+5+7= 150/15=10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/3 = 10 => x = 10 . 3 = 30
y/5 = 10 => x = 10 . 5 = 50
z/7 = 10 => x = 10 . 7 =70
Vậy độ dài môi cạnh ủa tam giác đó lần lượt là: 30, 50, 70
Gọi độ dài ba cạnh của tam giác đó lần lượt là x,y,z.Theo đề bài ta có :
x : y : z = 3 : 4 : 5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> x= 5.3 = 15,y = 5.4 = 20,z = 5.5 = 25
Vậy độ dài của ba cạnh lần lượt là 15cm,20cm,25cm
Gọi độ dài 3 cạnh của tam giác lần lượt là \(a,b,c\inℕ^∗;a,b,c\left(cm\right)\)
Do độ dài 3 cạnh tỉ lệ với \(3,4,5\)
\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Do chu vi của tam giác là \(60cm\)
\(\Rightarrow\)\(a+b+c=60\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
Do đó:
\(\frac{a}{3}=5\Rightarrow a=5.3=15\)
\(\frac{b}{4}=5\Rightarrow b=5.4=20\)
\(\frac{c}{5}=5\Rightarrow c=5.5=25\)
Vậy độ dài lần lượt của 3 cạnh tam giác lần lượt là: \(15,20,25\)