K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

chỉ cần làm câu B thôi nha câu A mình làm xong r

21 tháng 12 2021

2: AM=5cm

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành

24 tháng 10 2021

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

a: BC=10cm

AH=4,8cm

5 tháng 11 2021

mình cần câu b với c ạ 

 

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

13 tháng 4 2022

c) \(\widehat{AEF}=\widehat{EAH}=90^0-\widehat{ABH}=\widehat{ACB}\)

\(\Rightarrow\)△AFE∼△ABC (g-g)

\(\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\Rightarrow AB.AE=AC.AF\).

d) \(\widehat{CAM}=90^0-\widehat{AFE}=90^0-\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\)△ACM cân tại M \(\Rightarrow MA=MC\left(1\right)\)

\(\widehat{BAM}=90^0-\widehat{AEF}=90^0-\widehat{ACB}=\widehat{ABC}\)

\(\Rightarrow\)△ABM cân tại M \(\Rightarrow MA=MB\left(2\right)\)

-Từ (1) và (2) suy ra: \(MB=MC\) nên M là trung điểm BC.

e) \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\Rightarrow\dfrac{\dfrac{1}{2}S_{AEHF}}{2S_{AEHF}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\Rightarrow\dfrac{1}{4}=\left(\dfrac{EF}{BC}\right)^2\Rightarrow\dfrac{EF}{BC}=\dfrac{AH}{BC}=\dfrac{1}{2}\)

\(\Rightarrow H\equiv M\)

\(\Rightarrow\)△ABC vuông cân tại A.

 

 

 

 

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)