cho đa thức f(x) thỏa mãn f(x) + x.f(-x) = x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko dám chắc về cách làm nữa:
f(x)+x.f(-x)=x+1
Nếu x=0:
f(x)+0.f(-x)=x+1
f(x)=0+1=1
Nếu x=-1:
f(-1)+(-1).f(--1)=-1+1
f(-1)-f(1)=0
Nếu x=1:
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
=> f(1)+f(-1)-[f(-1)-f(1)]=f(1)+f(-1)+[f(-1)-f(1)]=2
f(1)+f(-1)-f(-1)+f(1)=f(1)+f(-1)+f(-1)-f(1)=2
f(1).2=2.f(-1)=2
f(1)=f(-1)=1
Vậy với mọi x thì f(x)=1
*Thay x=1=>f(1)+f(-1)=1+1=2
*Thay x=-1=>f(-1)-f(1)=-1+1=0
=>f(1)+f(-1)-(f(-1)-f(1))=2-0
=>2.f(1)=2
=>f(1)=1
f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2 (*)
f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)
=> 2. f(1) = 2 => f(1) = 1
\(x=1\Rightarrow f\left(1\right)+f\left(-1\right)=2016;x=-1\Rightarrow f\left(-1\right)-f\left(1\right)=2014\Rightarrow\)
\(f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\Leftrightarrow f\left(1\right)=1\)
Trả lời:
Bạn shitbo làm đúng rồi
^_^
\(.\)
-Cho x=0=>0.f(1)=2.f(0)
=> 0 =2.f(0)
=> f(0)=0
Vậy x=0 là nghiệm của f(x) (1)
-Cho x=-2=> -2.f(-1)=0.f(-2)
=> -2.f(-1)=0
=> f(-1)=0
Vậy x=-1 là nghiệm của f(x) (2)
Từ (1) và (2)=> f(x) có ít nhất 2 nghiệm phân biệt (đpcm)
Ghi chú: Ở đây mình xét 2 giá trị của x sao cho một vế bằng 0 rồi đi tìm nghiệm của f(x) chứ không phải là xét giá trị của x để suy ra nó là nghiêm của f(x) bạn nhé!!!
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1
Với x=-1 =>f(-1)-f(1)=0 (1)
Với x=1 =>f(1)+f(-1)=2 (2)
Lấy 2 vế (1) trừ 2 vế (2) ta được: -2f(1)=-2=>f(1)=1