M=1/2.2/3.3/4.4/5.......99/100 .Cmr 1/15<M<1/110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)
+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
............................
..............................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)
Chúc bạn học tốt
1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9
> 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10
> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
> 1/2 - 1/10
> 5/10 - 1/10
> 2/5 (1)
1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9
< 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9
< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9
< 1 - 1/9
< 8/9 (2)
Từ (1) và (2) => 2/5 < 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9 < 8/9
1/2.2 < 1/1.2
1/3.3 < 1/2.3
..................
1/100.100 < 1/99.100
=> <
Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)
Lời giải:
$M=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}$
$=\frac{1.2.3.4....99}{2.3.4...100}=\frac{1}{100}$
Hiển nhiên $\frac{1}{15}> \frac{1}{100}> \frac{1}{110}$ nên ta có đpcm.
** Sửa đề: CMR: $\frac{1}{15}> M> \frac{1}{110}$