K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 10

Lời giải:

$M=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}$

$=\frac{1.2.3.4....99}{2.3.4...100}=\frac{1}{100}$

Hiển nhiên $\frac{1}{15}> \frac{1}{100}> \frac{1}{110}$ nên ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 10

** Sửa đề: CMR: $\frac{1}{15}> M> \frac{1}{110}$

2 tháng 5 2020

Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)

+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)

                   \(\frac{1}{3.3}< \frac{1}{2.3}\)

                     ............................

                     ..............................

                  \(\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)

Chúc bạn học tốt

21 tháng 8 2016

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

> 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10

> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10

> 1/2 - 1/10

> 5/10 - 1/10

> 2/5 (1)

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

< 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9

< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9

< 1 - 1/9

< 8/9 (2)

Từ (1) và (2) => 2/5 < 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9 < 8/9

2 tháng 5 2016

1/2.2 < 1/1.2

1/3.3 < 1/2.3

..................

1/100.100 < 1/99.100 

=> <

2 tháng 5 2016

Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

.....

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)

14 tháng 1

rút gọn