Cho A=1.2.3+2.3.4+....+8.9.10 Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(A=1.2.3+2.3.4+3.4.5+...+8.9.10\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+8.9.10.4\)
\(=2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+8.9.10.\left(11-7\right)\)
\(=2.3.4+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+8.9.10.11-7.8.9.10\)
\(=8.9.10.11\)
\(=7920\)
\(\Rightarrow A=\dfrac{7920}{4}=1980\)
Có: A=1.2.3+2.3.4+4.5.6+...+8.9.10
4A=1.2.3.4 + 2.3.4.4+...+8.9.10.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+8.9.10.(11-7)
4A=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+...+8.9.10.11−7.8.9.1
4A=(1.2.3.4+2.3.4.5+...+8.9.10.11)−(0.1.2.3+1.2.3.4+...+7.8.9.10)
gọi A=................................
=>2A=2/1.2.3+2/2.3.4+.....+2/8.9.10
2A=1/1.2-1/2.3+1/2.3-...+1/8.9-1/9.10
2A=1/1.2-1/9.10=22/45 =>A=11/45
Đặt A=1.2.3+2.3.4+...+8.9.10
\(4A=1.2.3.4+2.3.4.4+...+8.9.10.4\)
\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)
\(4A=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)
\(4A=\left(1.2.3.4+2.3.4.5+...+8.9.10.11\right)-\left(0.1.2.3+1.2.3.4+...+7.8.9.10\right)\)
\(4A=8.9.10.11-0.1.2.3\)
\(4A=8.9.10.11\)
\(A=2.9.10.11\)
\(\Rightarrow A=1980\)
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)
\(B=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(B=2.\left(1-\dfrac{1}{10}\right)\)
\(B=2.\dfrac{9}{10}\)
\(B=\dfrac{9}{5}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+..+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(B=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2\times\left(1-\frac{1}{10}\right)\)
\(B=2\times\frac{9}{10}\)
\(B=\frac{9}{5}\)
\(B=2\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+..+\frac{1}{9\times10}\right)\)
\(B=2\times\left(\frac{1}{1\times2}-\frac{1}{9\times10}\right)\)
\(B=2\times\frac{22}{45}\)
\(B=\frac{44}{45}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}...+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{11}{45}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)
\(=\frac{1}{2}.\frac{22}{45}\)
\(=\frac{11}{45}\)
<=>4S=1.2.3.4 + 2.3.4.4+3.4.5.4+.....+8.9.10.4
<=>4S =1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2)+......+8.9.10.(11-7)
<=>4S=1.2.3.4 + 2.3.4.5 -1.2.3.4+3.4.5.6- 2.3.4.5+......+8.9.10.11 - 7.8.9.10
<=> 4S=8.9.10.11
<=>S=1980
Làm giúp mình đi