tìm giá trị nhỏ nhất của biểu thức: A:/1987-3x/ + /2718-3x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT gttđ: |a|+|b|\(\ge\) |a+b|
Ta có:A=|1987-3x|+|2718-3x|=|1987-3x|+|3x-2718|\(\ge\) |1987-3x+3x-2718|=|-731|=731
=>AMin=731
Dấu "=" xảy ra\(\Leftrightarrow\left(1987-3x\right)\left(3x-2718\right)\ge0\Leftrightarrow\int^{1987\le3x}_{2718\ge3x}\Leftrightarrow\int^{x\ge}_{x\le906}\frac{1987}{3}\Leftrightarrow\frac{1987}{3}\le x\le906\)
Vậy....
Áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
A = |1987 - 3x| + |2718 - 3x| = |1987 - 3x| + |3x - 2718| > |1987 - 3x + 3x - 2718| = |1987 - 2718| = |-731| = 731
Vậy GTNN của A là 731
\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)
\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|3x+2|+|3x-2018|=|3x+2|+|2018-3x|$
$\geq |3x+2+2018-3x|=2020$
Vậy GTNN của $A$ là $2020$. Giá trị này đạt tại $(3x+2)(2018-3x)\geq 0$
$\Leftrightarrow -\frac{2}{3}\leq x\leq \frac{2018}{3}$
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này