Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT gttđ: |a|+|b|\(\ge\) |a+b|
Ta có:A=|1987-3x|+|2718-3x|=|1987-3x|+|3x-2718|\(\ge\) |1987-3x+3x-2718|=|-731|=731
=>AMin=731
Dấu "=" xảy ra\(\Leftrightarrow\left(1987-3x\right)\left(3x-2718\right)\ge0\Leftrightarrow\int^{1987\le3x}_{2718\ge3x}\Leftrightarrow\int^{x\ge}_{x\le906}\frac{1987}{3}\Leftrightarrow\frac{1987}{3}\le x\le906\)
Vậy....
Xét biểu thức \(\left(3x+4\right)^4-5\). Có \(\left(3x+4\right)^4\) có số mũ chẵn
\(\left(3x+4\right)^4\ge0\) hay giá trị nhỏ nhất của \(\left(3x+4\right)^4=0\)
Từ đó có giá trị nhỏ nhất của \(\left(3x+4\right)^4-5=0-5=-5\)
Vậy giá trị nhỏ nhất của biểu thức \(\left(3x+4\right)^4-5\) là \(-5\)
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a) Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)
\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5z-6y=0\\6x-4z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y}{5}=\frac{z}{6}\\\frac{z}{6}=\frac{x}{4}\end{cases}}}\)
\(\Leftrightarrow\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.4=12\\y=3.5=15\\z=3.6=18\end{cases}}\)
a) gtnn bạn ạ
GTNN A= -4 vì 2/3x-1/ >= 0
b) gtln bạn ạ
GTLN B = 10 vì 4/x-2/ >=0
6x + 2y = -(6x - 2y)
= -2.(3x - 2y)
= 2 . 10
= 20