rút gọn biểu thức sau : A = 1+1/22+1/23+...+1/22015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
A = 3 − 1 + 3 + 1 ( 3 + 1 ) ( 3 − 1 ) + 2 ( 2 − 3 ) 2 = 2 3 3 − 1 + 2 − 3 = 3 + 2 − 3 = 2
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(2A=2^2+2^3+2^4+...+2^{2018}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)
\(A=2^{2018}-2\)
b) \(C=1+3^2+3^4+...+3^{2018}\)
\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)
\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)
\(8C=3^{2020}-1\)
\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)
\(Toru\)
a, P = 7 + 2 - 51 + 14 2 = 7 + 2 - 7 + 2 = 0
b, Q = 2 3 + 1 - 1 3 - 2 + 6 3 + 3
= 2 3 - 1 2 + 3 + 2 + 6 3 - 3 6
= 4 + 3
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015