K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`

Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`

`pt<=>20a^2-5b^2+48ab=0`

`<=>20a^2+48ab-5b^2=0`

`<=>20a^2-2ab+50ab-5b^2=0`

`<=>2a(a-10b)+5b(10a-b)=0`

`<=>(a-10b)(2a+5b)=0`

Đến đây dễ rồi bạn tự giải tiếp.

27 tháng 2 2021

ĐKXĐ: x \(\ne\)\(\pm\)1

Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)

Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)

=> ab = \(\dfrac{x^2-4}{x^2-1}\)

Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0

<=> 20a2 + 50ab - 2ab - 5b2 = 0

<=> (10a - b)(2a + 5b) = 0

<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)

TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)

<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)

<=> 10x2 - 30x + 20 = x2 + 3x + 2

<=> 9x2 - 33x + 18 = 0

<=> 9x2 - 27x - 6x + 18 = 0

<=> (9x - 6)(x - 3) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)

TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)

=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)

<=> 2x2 - 6x + 4 = -5x2 - 15x - 10

<=> 7x2 + 9x + 14 = 0

=> pt vn

30 tháng 3 2017

\(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0\)

\(\Leftrightarrow20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x-2}{x+1}\right)\left(\dfrac{x+2}{x-1}\right)=0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-2}{x+1}=a\\\dfrac{x+2}{x-1}=b\end{matrix}\right.\)thì ta có

\(20a^2-5b^2+48ab=0\)

\(\Leftrightarrow\left(10a-b\right)\left(2a+5b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=10a\\5b=2a\end{matrix}\right.\)

Rồi thế vô giải tiếp đi. Còn lại đơn giản nên tự làm nhé

29 tháng 3 2017

x= +-2

11 tháng 4 2022

1)

<=> \(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

x= 0 

x = 3

2) <=> \(x\left(x-3\right)=4\)

=> \(x=\dfrac{4}{x}+3\)

 

11 tháng 4 2022

\(2,x^2-3x=4\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)

\(\Rightarrow\)Pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{4;-1\right\}\)

\(3,x^4-5x^2+6=0\)

Đặt \(t=x^2\left(t\ge0\right)\)

Pt trở thành

\(t^2-5t+6=0\)

\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)

\(\Rightarrow\)Pt ó 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)

\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)

Vậy \(S=\left\{\pm\sqrt{3}\right\}\)

 

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$

28 tháng 9 2021

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.