Cho tam giác ABC với AB =< AC. Trên cạnh BC lấy điểm M bất kì khác B và C. Chứng minh AM<AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: AB>=AC
Ta có: \(\widehat{AMB}+\widehat{AMC}=180^0\)
nên \(\left[{}\begin{matrix}\widehat{AMB}>90^0\\\widehat{AMC}>=90^0\end{matrix}\right.\)
Nếu \(\widehat{AMC}>=90^0\) thì ΔAMC có cạnh AC là cạnh lớn nhất
nên AC>AM
Nếu \(\widehat{AMB}>90^0\) thì ΔABM có AB là cạnh lớn nhất
=>AB>AM
mà AB<AC
nên AM<AC
ΔABC có AB ≤ AC ⇒ ∠C ≤ ∠B.
ΔABM có ∠M1 là góc ngoài nên ∠M1 > ∠B
⇒ ∠M1 > ∠C
ΔAMC có ∠M1 > ∠C ⇒ AC > AM.
Lời giải:
a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (giả thiết)
$AM$ chung
$BM=CM$ (cmt)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b)
Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$
Xét tam giác $BAK$ và $CAK$ có:
$BA=CA$ (gt)
$AK$ chung
$\widehat{BAK}=\widehat{CAK}$ (cmt)
$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)
$\Rightarrow KB=KC$
c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$
hay $\widehat{EBK}=\widehat{FCK}$
Xét tam giác $EBK$ và $FCK$ có:
$\widehat{EBK}=\widehat{FCK}$ (cmt)
$BK=CK$ (cmt)
$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)
$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)
$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$
$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$
$KB=KC$ nên tam giác $KBC$ cân tại $K$
$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$
Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$
Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)
Xét tứ giác ADME có
ME//AD
MD//AE
Do đó: ADME là hình bình hành
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay D và E đối xứng nhau qua I
Bạn tham khảo lời giải tại đây:
cho tam giác ABC , AB - Hoc24