Điền <, >, =
8,03\(m^2\).....8,3\(m^2\)
Help pls!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( m2 - 1 )x2 + ( m - 1 )x - 4m2 + m = 0
Để phương trình có nghiệm x = 2
thì ( m2 - 1 ).4 + ( m - 1 ).2 - 4m2 + m = 0
<=> 4m2 - 4 + 2m - 2 - 4m2 + m = 0
<=> 3m - 6 = 0
<=> m = 2
Vậy với m = 2 thì phương trình nhận x = 2 làm nghiệm
Vì phương trình có nghiệm là 2
Nên thay x = 2 vào phương trình trên ta được :
\(4m^2-4+2m-2-4m^2+m=0\)
\(\Leftrightarrow-6+3m=0\Leftrightarrow m=2\)
Vậy với x = 2 thì m = 2
Trả lời:
\(M=\left(x-2020\right)^4+\left(x+y+1\right)^2+5\)
Ta có: \(\left(x-2020\right)^4\ge0\forall x;\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2+5\ge5\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2020=0\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2020\\y=-2021\end{cases}}}\)
Vậy GTNN của M = 5 khi x = 2020; y = - 2021
Gọi 2 số dương đó là \(a\) và \(b\)
Theo đề bài ta có:
\(20\left(a+b\right)=140\left(a-b\right)=7ab\)
\(\Rightarrow20a+20b=140a-140b=7ab\)
\(20a+20b=140a-140b\)
\(\Rightarrow20a=140a-160b\)
\(\Rightarrow160b=120a\)
Vậy 2 số cần tìm là 160 và 120
<
<