K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Áp dụng định lý hàm cos ta có \(CA^2=AB^2+BC^2-2AB.BC.cos\widehat{ABC}=2^2+3^2-2.2.3.cos\widehat{60o}=4+9-6=7\Rightarrow CA=\sqrt{7}\).

\(P_{ABC}=AB+BC+CA=2+3+\sqrt{7}=5+\sqrt{7}\). (đvđd)

\(S_{ABC}=\dfrac{1}{2}AB.BC.sin\widehat{ABC}=\dfrac{1}{2}.2.3.sin60^o=\dfrac{1}{2}.6.\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}}{4}\). (đvdt)

Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:a)     Tổng độ dài của cạnh AB và AC là bao nhiêu?b)   Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm. Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.a)    Tính độ dài BC.b)   Tính diện tích tam giác ABC, biết chiều cao AH là 15cm. Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:

a)     Tổng độ dài của cạnh AB và AC là bao nhiêu?

b)   Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.

 

Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.

a)    Tính độ dài BC.

b)   Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.

 

Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.

 

Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:

a) Tổng độ dài của cạnh AB và AC là bao nhiêu?

   b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.

1

Bài 1: 

a: AB+AC=75-45=30(cm)

b: AB=(30+4):2=17(cm)

=>AC=13cm

\(S=17\cdot13=221\left(cm^2\right)\)

Bài 2: 

a: BC=67-47=20(cm)

b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)

15 tháng 1 2022

bài 2, bài 3, bài 4 đâu bạn? Sao có 1 bài vậy?!

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

22 tháng 8 2020

Bài 1                     Giải

     Chu vi HCN là:

     (12+8).2= 40(cm)

     Diện tích HCN là:

       12.8= 96(cm)

 Bài 2     Chu vi hình vuông là:

                  20.4=80(cm)

           Mà chu vi hình vuông bằng chu vi HCN nên:

               Chiều rộng HCN là:

                  (80:2) -25=15(cm)

             Diện tích HCN là:

           15.25=375(cm)

Bài 3               Độ dài cạnh BC là:

                            120:10.2=24(cm)

Bài 4                Diện tích tam giác ABC là:

                             ( 5.8):2 = 20(cm)

 Chúc bn hok tốt~~

          

         

                  

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)

Diện tích tam giác:

\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)

Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )

Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)

\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)

\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)

Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)

Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)