Ta có 1^2+2^2+3^2+...+10^2= 385. Khi đó 2^2+4^2+6^2+...+20^2=? \
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s = 385 . 4 = 1540
mình chắc chắn 100% luôn vì mình mới thi mà
ta có S = 385 . 4= 1540
mình chắc chắn 100% luôn vì hôm qua mình mới thi giải toán trên mạng và gặp câu hỏi này và mình đã điền kết quả là 1540 và mình được cộng 10 điểm
A = \(2^2.\left(1^2+2^2+3^2+...+10^2\right)=4.385=1540\)
B=\(3^2.\left(1^2+2^2+3^2+...+10^2\right)=385.9=3465\)
Ta thấy nếu bỏ số mũ của tất cả các số hạng đi thì mỗi số theo thứ tự ở S sẽ gấp đôi mỗi số theo thứ tự ở dãy trên.
Vậy từ đó ta dễ dàng suy ra nếu cả 2 bình phương lên thì mỗi số ở S sẽ gấp 4 lần số dãy trên theo thứ tự.
Như vậy hiển nhiên tổng cũng sẽ gấp lên 4 lần.
Tổng của S là:
385.4=1540
Đáp số1540
Chúc em học tốt^^
2^2+4^2 + 6^2 +....+20^2 = 2^2(1+2^2+3^2+...+10^2) = 4 x 385 = 1540
22+42+62+82+102+122+142+162+182+202
=4+16+36+64+100+144+196+256+324+400
=1540
Ta có : \(1^2+2^2+3^2+......+10^2=385\)
\(2^2\left(1^2+2^2+3^2+......+10^2\right)=2^2.385\)
\(2^2+4^2+6^2+.....+20^2=4.385\)
\(2^2+4^2+6^2+.....+20^2=1540\)
Đặt \(A=1^2+2^2+3^2+...+10^2\)
Đặt \(B=2^2+4^2+6^2+...+20^2\)
\(2^2.A=2^2+4^2+6^2+...+20^2=B=2^2.385=1540\)
Ta có: S=22+42+62+...+202
=(2.1)2+(2.2)2+(2.3)2+...+(2.10)2
=22.12+22.22+22.32+...+22.102
=22.(1+22+32+...+102)
Mà 12+22+32+...+102=385 nên:
S=22.385
=4.385
=1540
Vậy S=1540
\(2^2+4^2+6^2+...+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(3.2\right)^2+...+\left(10.2\right)^2\)
\(=4\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4.385=1540\)