K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Chọn D

Ta có  f ( x ) = ∫ ( 2 - x 2 ) d x = 2 x - x 3 3 + C

 Vì f(2) = 7/3 nên C = 1;  

Vậy:  f(x) =   2 x - x 3 3 + 1

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

f'(x)=2*3x^2+3*2*(a+2)*x+6a^2

=6x^2+6x(a+2)+6a^2

Δ=(6a+12)^2-4*6*6a^2

=36a^2+144a+144-144a^2

=-108a^2+144a+144

f'(x)>0 với mọi x

=>-108a^2+144a+144<0

=>a<-2/3; a>2

f'(-1)=6

=>6*(-1)^2+6*(-1)*(a+2)+6a^2=6

=>6a^2+6-6a-12=6

=>6a^2-6a-12=0

=>a^2-a-2=0

=>a=2(loại) hoặc a=-1(nhận)

19 tháng 3 2017

F(x1)+F(x2)=2x1+3+2x2+3=2(x1+x2)+6=2.5+6=16

Đs: 16

lạ 16 đấy hihi

20 tháng 3 2017

Theo đề bài: \(f\left(x\right)=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(x_1\right)=2\times x_1+3\\f\left(x_2\right)=2\times x_2+3\end{matrix}\right.\)

\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=2\times x_1+3+2\times x_2+3=\left(2\times x_1+2\times x_2\right)+\left(3+3\right)\) \(=2\times\left(x_1+x_2\right)+6\) \(=2\times5+6=10+6=16\)

Vậy \(f\left(x_1\right)+f\left(x_2\right)=16\).

11 tháng 3 2017

f(x1)+f(x2)= (2.x1+3)+(2.x2+3)=2.(x1+x2)+6=2.5+6=16

Bấm đúng nhé

11 tháng 3 2017

cảm ơn nhá