Bài 1. Cho tam giác DEK có EK = 9cm, DK = 12cm, DE = 15cm.
a) Chứng minh: Tam giác DEK là tam giác vuông.
b) Kẻ KH vuông góc với DE tại H. Biết KH = 7,2cm. Tính DH và chu vi của tam giác DHK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác DEK
Ta có: 152 = 225
92 + 122 = 225
=> 152 = 92 + 122 ( 225 = 225 )
Do đó: Tam giác DEK vuông tại D.
b) * Xét tam giác KDH vuông tại H
Theo định lý Pytago:
Ta có: DH2 = DK2 - HK2
hay DH2 = 122 - 7,22
=> DH2 = 144 - 51,84
=> DH2 = 92,16
=> DH = 9,6 ( cm )
* Chu vi của tam giác DHK là:
12 + 7,2 + 9,6 = 28,8 ( cm )
Vậy DH = 9,6 cm
Chu vi tam giác DHK: 28,8 cm
# Chúc bạn học tốt #
a: Xét ΔDEH vuông tại H và ΔKEH vuông tại H có
EH chung
ED=EK
DO đó: ΔDEH=ΔKEH
b: DK=18cm
nên DH=6cm
\(EH=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)
c: XétΔDEK có
H là trung điểm của DK
HM//DE
Do đó: M là trung điểm của EK
Ta có: ΔEHK vuông tại H
mà HM là đường trung tuyến
nên HM=KM
Bạn tự vẽ hình nha
a) +)Ta có \(\Delta DEF\)cân tại D (gt) nên DE=DF( suy ra từ khái niệm)
\(\widehat{E}=\widehat{F}\)(suy ra từ tính chất)
+) K là trung điểm của EF (gt) nên KE=KF
+) Xét \(\Delta DEK\) và \(\Delta DFK\)ta có:
DE=DF(cmt)
\(\widehat{E}=\widehat{F}\)(cmt)
KE=KF(cmt)
\(\Rightarrow\Delta DEK=\Delta DFK\left(c.g.c\right)\)
\(\Rightarrow\widehat{DKE}=\widehat{DKF}\)( hai góc tương ứng) (1)
Mặt khác \(\widehat{DKE}+\widehat{DKF}=180\)(2)
Từ (1) và (2) suy ra \(\widehat{DKE}=\widehat{DKF}=\frac{1}{2}180=90\)
\(\Rightarrow DK\perp EF\)(đpcm)
b) +)Vì KE + KF = EF = 24 cm
mà KE = KF (cmt)
\(\Rightarrow KE=KF=\frac{1}{2}24=12\)
+) Áp dụng định lí PYTAGO vào \(\Delta DEK\)vuông tại D có
\(DE^2=DK^2+KE^2\)
\(DK^2=DE^2-KE^2\)
hay\(DK^2=15^2-12^2\)
\(DK=81\)(đpcm)
Vậy chu vi \(\Delta DEK\)là
DE+DK+KE=15+81+12=108(cm)
bn tự vẽ hình nha
a) c1: nếu bn đã học tính chất: trong 1 tam giác cân đường cao đồng thời là phân giác, trung tuyến, trung trực
thì bn lm như sau:
vì k là trung điểm của ef =>dk là trung tuyến của tam giác def
mà tam giác def cân tại d => dk là đường cao của tam giác def
=>dk vuông góc với ef
a) c2 nêu bn chưa học tính chất trên thì bn làm như sau:
xét tam giác dke và tam giác dkf có: cạnh dk chung, de=df( tam giác def cân tại d), ke=kf( k là trung điểm của ef)
=> tam giác dke= tam giác dkf (c.c.c)
=> góc dke= góc dkf( 2 góc tương ứng)[ vt chữ góc lâu quá nên mk ko vt góc bn cx tự hiểu nha)
mà dke+dkf=180 ( 2 góc kề bù) => dke=dkf=90 độ
=> dk vuông góc với ef
b)vì k là trung điểm của ef => ke=kf=ef/2=24/2=12(cm)
vì dk vuông góc với ef (câu a)=> tam giác dke vuông tại k
=>\(de^2=dk^2+ek^2\Rightarrow dk^2=15^2-12^2=81\Rightarrow dk=9\)( vì de>0)
Chu vi tam giác dke là: 15+12+9=36(cm)
Lời giải:
a)
Ta thấy:
$9^2+12^2=15^2\Leftrightarrow EK^2+DK^2=DE^2$. Theo định lý Pitago đảo thì tam giác $DEK$ vuông tại $K$
b)
Áp dụng định lý Pitago đối với tam giác $DHK$ vuông có:
$DH=\sqrt{DK^2-KH^2}=\sqrt{12^2-7,2^2}=9,6$ (cm)
Chu vi tam giác $DHK$ là:$DK+DH+HK=12+9,6+7,2=28,8$ (cm)
Hình vẽ: