Cho: \(x\ge1\). Tìm GTNN của biểu thức: Q=\(3x+\dfrac{1}{2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Q = \(3x+\dfrac{1}{2x}=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{5x}{2}\)
Áp dụng bđt cosi cho hai số dương x/2, 1/2x và bđt x \(\ge\)1
Ta có: Q \(\ge2\sqrt{\dfrac{x}{2}\cdot\dfrac{1}{2x}}+\dfrac{5}{2}\cdot1=2\cdot\dfrac{1}{2}+\dfrac{5}{2}=\dfrac{7}{2}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{1}{2x}\\x=1\end{matrix}\right.\) <=> x = 1
Vậy MinQ = 7/2 <=> x = 1
\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)
Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)
\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)
Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
1)???
2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A là 2 tại x=2.
3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)
\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)
Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$
$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$
Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$
\(Q=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{5}{2}x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{5}{2}.1=\dfrac{7}{2}\)
Dấu "=" xảy ra khi \(x=1\)