cần giải ngay bây giờ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\begin{matrix}a\text{ // }b\\a\perp AB\end{matrix}\Rightarrow b\perp AB\)
b/ \(\hat{ACD}+\hat{CDB}=180^o\) (trong cùng phía, a // b)
\(\Rightarrow\hat{CDB}=180^o-\hat{ACD}=60^o\)
\(\hat{ACD}+\hat{aCD}=180^o\) (kề bù)
\(\Rightarrow\hat{aCD}=180^o-\hat{ACD}=60^o\)
Lời giải:
Đặt $\frac{x+1}{3}=\frac{y-2}{4}=\frac{z-1}{13}=a$
$\Rightarrow x+1=3a; y-2=4a; z-1=13a$
$\Rightarrow x=3a-1; y=4a+2; z=13a+1$
Thay vào điều kiện $2x-3y+z=35$ thì:
$2(3a-1)-3(4a+2)+(13a+1)=35$
$\Rightarrow 7a-7=35$
$\Rightarrow a=6$
$\Rightarrow x=3.6-1=17; y=4.6+2=26; z=13.6+1=79$
Đáp án 1.
\(P=\dfrac{4}{3}.\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{4}{3}\left(1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}\right)=\dfrac{4}{3}-\dfrac{4}{3}.\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le\dfrac{4}{3}\)
\(P_{max}=\dfrac{4}{3}\) khi \(x=1\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow P\ge0\)
\(P_{min}=0\) khi \(x=0\)
a: Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
978,6 : 5 = 195,72
857,5 : 35 = 24,5
431,25 : 125 = 3,45
lại lỗi r
Siêu thần tượng đã nở nụ cười cũng ko đẹp bằng em 😏 ❤ ✨