K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

kb 0 mk giải cho

15 tháng 12 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{3}=\frac{x+y+z}{2+\left(-3\right)+3}=\frac{5,2}{2}=2,6\)

Do đó:

\(\frac{x}{2}=2,6\Rightarrow x=2,6.2=5,2\)

\(\frac{y}{-3}=2,6\Rightarrow y=2,6.-3=-7,8\)

\(\frac{z}{3}=2,6\Rightarrow z=2,6.3=7,8\)

Vậy \(x=5,2;y=-7,8;z=7,8\) 

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

16 tháng 11 2021

\(\dfrac{x}{y+z-3}=\dfrac{y}{x+z}=\dfrac{z}{x+y+3}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=\dfrac{1}{4044\left(x+y+z\right)}\)

\(\Rightarrow\left\{{}\begin{matrix}y+z-3=2x\\x+z=2y\\x+y+3=2z\end{matrix}\right.\) và \(4044\left(x+y+z\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3x+3\\x+y+z=3y\\x+y+z=3z-3\end{matrix}\right.\\ \Rightarrow3x+3=3y=3z-3\\ \Rightarrow x+1=y=z-1\)

\(\left\{{}\begin{matrix}x=y-1\\z=y+1\end{matrix}\right.\)

Lại có \(4044\left(x+y+z\right)=2\)

\(\Rightarrow4044\left(y-1+y+y+1\right)=2\\ \Rightarrow4044\cdot3y=2\\ \Rightarrow y=\dfrac{1}{674}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{673}{674}\\z=\dfrac{675}{674}\end{matrix}\right.\)

\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

   \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)

Vậy: a = 42

        b = 28

        c = 20

27 tháng 10 2018

Bài 1: 

a) 

Ta có: \(\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

Và: \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)

=> \(\frac{b}{14}=\frac{c}{10}\)

Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau; ta có: 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)

+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)

+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)

+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)

Vậỵ:..........

b)

Ta có: 7a = 9b = 21c

=> 7a/63 = 9b/63 = 21c/63

=> a/9 = b/7 = c/3

Áp dụng tính chất dãy tỉ số bằng nhau; ta có:

a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3

+) a/9 = -3 => a = -27

+) b/7 = -3 => b = -21

+) c/3 = -3 => c = -9 

Vậy:..............

Bài 2: 

a) Theo bài: x:y:z = 5:3:4

=> x/5 = y/3 = z/4

Áp dụng tính chất dãy tiwr số bằng nhau; ta có:

x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11

+) Với x/5 = -11 => x=-55

+) Với y/3 = -11 => y = -33

+) Với z/4 = -11 => z = -44

Vậy:......

b) _ Tương tự câu a) ở bài 1

c) 

Ta đặt: x/3 = y/12 = z/5 = k          ( \(k\inℤ\))

=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)

Theo bài: xyz = 22,5

=> 3k.12k.5k = 22,5

=> 180.k3 = 22,5

=> k3 = 1/8 = (1/2)3

=> k = 1/2

Với k = 1/2 => x = 3/2; y = 6; z = 5/2

Vậy:..........

d)

27 tháng 12 2021

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{2}=\dfrac{z}{4}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{12}=\dfrac{x+y-z}{4+6-12}=\dfrac{10}{-2}=-5\\ \Leftrightarrow\left\{{}\begin{matrix}x=-20\\y=-30\\z=-60\end{matrix}\right.\)

2 tháng 11 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có: 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)

Vậy ...

20 tháng 8 2017

2x phần 3 bằng 3y phần 4 bằng 4z phần 5 và x+y-z bằng 1/2

21 tháng 6 2016

từ \(\frac{x}{2}\)=\(\frac{y}{3}\)=>\(\frac{x}{8}\)=\(\frac{y}{12}\)

\(\frac{y}{4}\)=\(\frac{z}{5}\)=>\(\frac{y}{12}\)=\(\frac{z}{15}\)

=>\(\frac{x}{8}\)=\(\frac{y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(=>\hept{\begin{cases}x=2.8=16\\y=2.12=24\end{cases}z=2.15=30}\)

a) Ta có: \(x:2=y:\left(-5\right)\)

nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)

mà x-y=-7

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(-2;5)

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)

Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)

nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

mà x+y-z=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)

Vậy: (x,y,z)=(16;24;30)

  Giải bài 55 trang 30 Toán 7 Tập 1 | Giải bài tập Toán 7

 

b)

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ta có Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

 

 

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

8 tháng 5 2023

\(\dfrac{x}{10}\) = \(\dfrac{y}{5}\) ⇒ \(x\) = \(\dfrac{y}{5}\) \(\times\) 10 = 2y

\(\dfrac{y}{2}\) = \(\dfrac{z}{3}\) = ⇒ \(\dfrac{4y}{8}\) = \(\dfrac{4z}{12}\) ⇒ 4z = \(\dfrac{4y}{8}\) \(\times\) 12 = 6y

Theo bài rat ta có:

 \(x+4z\) = 2y + 6y = 320 ⇒ 8y = 320 ⇒ y = 320: 8 =40

\(x\) = 40 \(\times\) 2 = 80

z = \(\dfrac{y}{2}\) \(\times\) 3 = \(\dfrac{40}{2}\) \(\times\) 3 = 60 

Vậy \(x\) = 80; y = 40; z = 60

 

1 tháng 8 2018

Hix trình bày đề thiếu chuyên nghiệp :<<

Chỉnh đề: Tìm x, y, z biết:

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(x^2+y^2-z^2=-12\)

b) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\)\(x+y-z=10\)

Giải:

a) Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2+y^2-z^2}{4+9-25}=\dfrac{-12}{-12}=1\)

Vậy \(\left\{{}\begin{matrix}x^2=1.4=4\Rightarrow x=\pm2\\y^2=1.9=9\Rightarrow y=\pm3\\z^2=1.25=25\Rightarrow z=\pm5\end{matrix}\right.\)

b) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{40}=\dfrac{y}{60}\) (1)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{60}=\dfrac{z}{75}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}=\dfrac{x+y-z}{40+60-75}=\dfrac{10}{25}=\dfrac{2}{5}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{2}{5}.40=16\\y=\dfrac{2}{5}.60=24\\z=\dfrac{2}{5}.75=30\end{matrix}\right.\)

21 tháng 12 2021

a) Ta có:

x2=y3=z5⇒x24=y29=z225x2=y3=z5⇒x24=y29=z225

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

x24=y29=z225=x2+y2−z24+9−25=−12−12=1x24=y29=z225=x2+y2−z24+9−25=−12−12=1

Vậy ⎧⎪⎨⎪⎩x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5{x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5

b) x2=y3⇒x40=y60x2=y3⇒x40=y60 (1)

y4=z5⇒y60=z75y4=z5⇒y60=z75 (2)

Từ (1) và (2) suy ra x40=y60=z75x40=y60=z75

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

x40=y60=z75=x+y−z40+60−75=1025=25x40=y60=z75=x+y−z40+60−75=1025=25

Vậy ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=25.40=16y=25.60=24z=25.75=30