a) cho các số a;b;c đôi một khác nhau và a+b/a-b=c+a/c-a. tính giá trị biểu thức m = a^2 – bc b) cho bz-cy/a = cx-az/b = ay-bx/c . chứng minh rằng : x/a=y/b=z/c. (giả thiết các tỷ lệ thức đều có nghĩa) Mọi người giúp mik bài nâng cao này nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $A=\left\{30;33;35;50;53;55\right\}$
b. $B=\left\{80;71;62;53;44;35;26;17\right\}$
c. $C=\left\{10;21;32;43;54;65;76;87;98\right\}$
d. $D=\left\{14;25;36;47;58;69\right\}$
Giải:
a) \(A=\left\{30;33;35;50;53;55\right\}\)
b) \(B=\left\{17;26;35;44;53;62;71;80\right\}\)
c) \(C=\left\{10;21;32;43;54;65;76;87;98\right\}\)
d) \(D=\left\{14;25;36;47;58;69\right\}\)
a) A ∩ B là tập hợp các học sinh vừa học giỏi Toán vừa học giỏi Ngoại ngữ.
b) A ∩ B là tập hợp B các số chia hết cho 9.
c) A ∩ B là tập hợp B các số chia hết cho 10
a) A ∩ B là tập hợp các học sinh vừa học giỏi Toán vừa học giỏi Ngoại ngữ.
b) A ∩ B là tập hợp B các số chia hết cho 9.
c) A ∩ B là tập hợp B các số chia hết cho 10.
\(a,\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\\ \Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\\ \Leftrightarrow2bc=2a^2\Leftrightarrow a^2=bc\Leftrightarrow m=a^2-bc=0\)
\(b,\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\\ \Leftrightarrow\left\{{}\begin{matrix}abz-acy=0\\bcx-abz=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{z}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)