Cho hình thang cân ABCD có đáy là AB, CD và BCD = 75 độ thì:
A. ACD = 75 độ C. ABD = 105 độ
B. ABC = 75 độ D. BAD = 75 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc B = 105 độ và góc D = 75 độ.
Vì AB = BC = CD, suy ra tam giác ABC và tam giác BCD là tam giác cân.
Do đó, ta có góc ABC = góc BAC và góc BCD = góc BDC.
Vì góc BAC + góc ABC + góc BCA = 180 độ (tổng các góc trong tam giác ABC bằng 180 độ),
thay giá trị vào ta có góc BAC + góc BAC + góc BCA = 180 độ.
Suy ra góc BAC + góc BCA = 180 độ - góc BAC = góc ABC.
Tương tự, ta có góc BCD + góc BDC = 180 độ - góc BDC = góc BCD.
Vậy ta có góc BAC = góc ABC = góc BCA và góc BCD = góc BDC = góc BCD.
Do đó, AC là tia phân giác của góc A.
b) Ta đã chứng minh được AC là tia phân giác của góc A.
Vì AB = BC = CD, suy ra tam giác ABC và tam giác BCD là tam giác cân.
Vì góc BAC = góc ABC và góc BCD = góc BDC,
nên ta có góc BAC = góc ABC = góc BCA và góc BCD = góc BDC = góc BCD.
Vậy ta có AB || CD.
Do đó, ABCD là hình thang cân.
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD
dễ chứng minh tứ giác ABFE là hình chữ nhật
=>EF=AB=12cm
do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)
\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)
\(=\dfrac{1}{2}\left(18-12\right)=3cm\)
xét trong tam giác BFC vuông tại F
\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)
pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)
\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số
Kẻ `AH, CK` vuông góc `CD`.
Xét `\DeltaADH` và `\DeltaBCK` có:
`AH =CK`
`\hatD=\hatC`
`AD=BC`
`=> \DeltaADH=\DeltaBCK`
`=> DH=CK=x`
Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)
`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`
`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`
Chọn A
cảm ơn bạn thịnh ạ