Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{D}=180^o\left(đề.bài\right)\\\widehat{B}+\widehat{A}=180^o\left(t/c.hình.thang\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=\widehat{D}\)
⇒ ABCD là hình thang cân (dpcm)
Ta có : AB // CD ⇒ \(\widehat{B}\) + \(\widehat{C}\) = 180o mà \(\widehat{B}+\widehat{D}=\) 180o ⇒ \(\widehat{D}=\widehat{C}\)
Vì AB // CD; \(\widehat{D}=\widehat{C}\) vậy ABCD là hình thang cân
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
a: Sửa đề: \(\widehat{C}=75^0\)
Xét tứ giác ABCD có \(\widehat{B}+\widehat{C}=180^0\)
nên ABCD là hình thang
Suy ra: \(\widehat{BAC}=\widehat{ACD}\)
mà \(\widehat{BAC}=\widehat{BCA}\)
nên \(\widehat{ACD}=\widehat{ACB}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
a) Ta có góc B = 105 độ và góc D = 75 độ.
Vì AB = BC = CD, suy ra tam giác ABC và tam giác BCD là tam giác cân.
Do đó, ta có góc ABC = góc BAC và góc BCD = góc BDC.
Vì góc BAC + góc ABC + góc BCA = 180 độ (tổng các góc trong tam giác ABC bằng 180 độ),
thay giá trị vào ta có góc BAC + góc BAC + góc BCA = 180 độ.
Suy ra góc BAC + góc BCA = 180 độ - góc BAC = góc ABC.
Tương tự, ta có góc BCD + góc BDC = 180 độ - góc BDC = góc BCD.
Vậy ta có góc BAC = góc ABC = góc BCA và góc BCD = góc BDC = góc BCD.
Do đó, AC là tia phân giác của góc A.
b) Ta đã chứng minh được AC là tia phân giác của góc A.
Vì AB = BC = CD, suy ra tam giác ABC và tam giác BCD là tam giác cân.
Vì góc BAC = góc ABC và góc BCD = góc BDC,
nên ta có góc BAC = góc ABC = góc BCA và góc BCD = góc BDC = góc BCD.
Vậy ta có AB || CD.
Do đó, ABCD là hình thang cân.
Dễ
mà
sao
bạn
không
làm
được