Cho hàm số : y = f(x) = lx-1l + 2
Tìm x sao cho f(x) = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
Ta có: f(x) = 3 => y = 3
Thay vào ta có:
\(\left|3x-1\right|-2\) = 3
=> \(\Rightarrow\left|3x-1\right|=3+2=5\)
+) 3x - 1 = 5
=> 3x = 5 + 1 = 6
=> x = \(\frac{6}{3}=2\)
+) 3x - 1 = -5
=> 3x = -5 + 1 = -4
=> x = \(\frac{-4}{3}\)
Vậy x = 2 hoặc x = \(\frac{-4}{3}\)
Ta có: \(y=f\left(x\right)=\left|3x-1\right|-2\)
Khi \(f\left(x\right)=3\) thì \(3=\left|3x-1\right|-2\)
\(\Rightarrow\left|3x-1\right|=5\)
\(\Rightarrow3x-1=\pm5\)
+) \(3x-1=5\Rightarrow x=2\)
+) \(3x-1=-5\Rightarrow x=\frac{-4}{3}\)
Vậy \(x\in\left\{2;\frac{-4}{3}\right\}\)
a) Thay x=-2 vào hàm số \(f\left(x\right)=2x^2-5\),ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=8-5=3\)
Thay x=1 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=3 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(3\right)=2\cdot3^2-5=2\cdot9-5=18-5=13\)
Vậy: f(-2)=3
f(1)=-3
f(3)=13
b) Để f(x)=3 thì \(2x^2-5=3\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=3 thì \(x\in\left\{2;-2\right\}\)
\(f\left(x\right)=3\Leftrightarrow\left|x-1\right|+2=3\Leftrightarrow\left|x-1\right|=1\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)