K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

Ta có : góc AIC=góc BID ( đối đỉnh)                                                                                                                            góc AID=góc BIC (đối đỉnh)

27 tháng 2 2016

vi doi dinh

15 tháng 7 2018

ta có: góc ACK = góc DCK , góc ABK = góc DBK 
xét tam giác KBC có : 
góc BKC = 180 - (ABK + ABC) -( DCK + BCD ) (*) 
xét tam giác ABC : 
DCK + BCD = 180 - ACK - ABC - BAC = 180 - DCK - ABC - BAC 
xét tam giác BCD: 
ABK +ABC = 180 - DBK - BCD - BDC = 180 - ABK - BCD - BDC 
(*) <=> BKC = 180 - (180 - ABK - BCD - BDC) - ( 180-DCK -ABC - BAC) 
= ABK + BCD + BDC - 180+ DCK + ABC + BAC 
= BAC + BDC + (ABK + ABC + BCD + DCK) - 180 
= BAC + BDC + 180 - BKC - 180 
<=> 2. BKC = BAC + BDC 
<=> BKC = ( BAC + BDC) / 2 ---> dpcm

9 tháng 10 2017

A B C D a E F m n

Ta thấy: \(\widehat{AEF}=\widehat{EFD}\Rightarrow\frac{1}{2}\widehat{AEF}=\frac{1}{2}\widehat{EFD}\Leftrightarrow\widehat{FEm}=\widehat{EFn}\)

Mà 2 góc này có vị trí đồng vị.

=>Em // Fn

9 tháng 10 2017

giúp đi ạ

a) Xét ΔAFH và ΔADB có

\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔAFH∼ΔADB(g-g)

b) Xét ΔBHF và ΔCHE có

\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)

\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)

Do đó: ΔBHF∼ΔCHE(g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)

hay \(BH\cdot HE=CH\cdot HF\)(đpcm)

19 tháng 6 2018

cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90