\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\) , Chứng Minh BĐT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - si : x2 + y2 ≥ 2xy
=> \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\) ≥ \(2.\dfrac{a}{c}\) ( 1)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\) ≥ \(2.\dfrac{b}{a}\) ( 2)
\(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\) ≥ \(2.\dfrac{c}{b}\) ( 3)
Cộng từng vế của ( 1 , 3 , 3) , ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\) ≥ \(2.\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)
=> ĐPCM
Áp dụng BĐT Cauchy cho 2 số dương:
\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}.b}=2a\\\dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2}{c}.c}=2b\\\dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2}{a}.a}=2c\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\left(đpcm\right)\)
Dấu "=" xay ra \(\Leftrightarrow a=b=c\)
Áp dụng BĐT cosi cho 3 số a,b,c dương:
\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\ \dfrac{b^2}{c}+c\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\ \dfrac{c^2}{a}+a\ge2\sqrt{\dfrac{c^2a}{a}}=2c\)
Cộng vế theo vế 3 BĐT trên
\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\\ \Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
Dấu \("="\Leftrightarrow a=b=c\)
Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:
\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)
Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)
Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)
Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)
Có:
\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)
\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)
\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)
\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)
\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)
Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)
Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)
Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)
Ta có đpcm.
Dấu bằng xảy ra khi $a=b=c$
áp dụngBĐt cô si cho 2 số ta có
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{a^2}{b^2}.\dfrac{b^2}{c^2}}=2\dfrac{a}{c}\)
tt ta có
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\dfrac{b}{a}\); \(\dfrac{b^2}{a^2}+\dfrac{a^2}{c^2}\ge2\dfrac{b}{c}\)
cộng các BĐT trên ta có
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
⇔ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\) (đpcm)
Áp dụng bđt Cauchy Schwarz dạng Engel ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)
\(\ge\dfrac{9}{2}\left(đpcm\right)\)
Hình như thế này mới đúng chứ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Áp dụng BĐT Cosi:
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2.\dfrac{a}{c};\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2.\dfrac{b}{a};\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2.\dfrac{c}{b}\)
\(\Rightarrow2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Đẳng thức xảy ra khi \(a=b=c>0\)
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
\(VT=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{1}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3>=\dfrac{9}{2}-3=\dfrac{3}{2}\)