K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Câu 1 : 

a, \(4x^4y^2.9x^2y^4z^2=36x^6y^6z^2\)

b, bậc 14 ; hệ số 36 

biến x^6y^6z^2 

 

a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy

b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz

c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2

d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy

e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4

f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz

a: A=-2xy+3/2xy^2+1/2xy^2+xy

=-2xy+xy+3/2xy^2+1/2xy^2

=2xy^2-xy

b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)

\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)

c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)

\(=7x^4-x^2+3x^2y^3\)

d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)

=1/4xy^2+xy

e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)

\(=-2x^2-y^3+2z^4\)

f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)

\(=6xy^2z-4xyz\)

30 tháng 3 2019

Chọn C

Đơn thức đồng dạng với đơn thức 3/2x2yz2 là:

-x2yz2 và -1/2x2yz2.

3 tháng 3 2021

Tất cả là đơn thức đồng dạng

3 tháng 3 2021

Mik k hỉu lắm!

14 tháng 6 2023

Đơn thức : 

a) 3xy2z ; 3 và 1/2  ; 10x/3y

b) 4/3 x2yz ; 2018 ; xy2/3 ; 2 xy/z 

14 tháng 6 2023

a/Các đơn thức: 3xy2z ; \(3\dfrac{1}{2}\) ; \(\dfrac{10x}{3y}\)
b/Các đơn thức: \(\dfrac{4}{3}x^2yz\) ; \(2018\) ; \(\dfrac{xy^2}{3}\) ; \(\dfrac{2xy}{z}\)
#deathnote

`@` `\text {Ans}`

`\downarrow`

`a,`

`-1/2xy^2*3x^3y`

`= (-1/2*3)(x*x^3)(y^2*y)`

`= -3/2x^4y^3`

`b,`

`(xy)^2*(-3xy^2z)`

`= (-3)(x^2*x)(y^2*y^2)(z)`

`= -3x^3y^4z`

`c,`

`(2xy)*(-1/4x^2)*y^3`

`= (2*-1/4)(x*x^2)(y*y^3)`

`= -1/2x^3y^4`

a: =-1/2*3*x^3*x*y^2*y=-3/2x^4y^3

b: =x^2y^2*(-3)xy^2z=-3x^3y^4z

c: =2*(-1/4)*xy*x^2*y^3=-1/2x^3y^4

22 tháng 8 2023

1) \(x^2-4xy+4y^2+xz-2yz\)

\(=\left(x^2-4xy+4y^2\right)+\left(xz-2yz\right)\)

\(=\left(x-2y\right)^2+z\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+z\right)\)

2) \(\left(x-y\right)^3+\left(x+y\right)^3\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)

\(=\left(x-y+x+y\right)\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)

\(=2x\left(x^2+3y^2\right)\)

22 tháng 8 2023

mik cảm ơn

26 tháng 10 2021

a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(2x+3\right)\left(x^2+1\right)\)

b: \(=\left(x-4\right)\left(x+3\right)\)

e: =(x+3)(x-2)

26 tháng 10 2021

a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)

b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)

c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=4xy\left(y-3x+2\right)\)

e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)

f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)

g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)

i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)

20 tháng 7 2017

Nhóm các đơn thức đồng dạng:

-5x2yz; 2/3 x2yz 3xy2z; -2/3 xy2z 10x2y2z; 5/7 x2y2z
18 tháng 10 2021

\(8x^2y-8xy-2yz^2+2y\)

\(=2y\left(4x^2-4x+1-z^2\right)\)

\(=2y\left(2x-1-z\right)\left(2x-1+z\right)\)