Tìm m, n thuộc z:
a/ m/9 - 3/n =1/28
b/ 4/m - 1/6 = -n/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A( x ) = x3 + mx + n ( n ; m thuộc Z ). Tìm m và n biết A : ( x - 1 ) dư 4 và A : ( x + 1 ) dư 6
cách 2 nếu chưa học bezout
x^3 +mx+n x-1 x^2+x+(m+1) x^3-x^2 - x^2+mx+n x^2-x - (m+1)x+n (m+1)x-(m+1) - n+m+1
Mà \(A\left(x\right):\left(x-1\right)\)dư 4\(\Rightarrow m+n+1=4\)
\(\Rightarrow m+n=3\left(1\right)\)
x^3 +mx+n x+1 x^2-x+(m+1) x^3+x^2 - -x^2+mx+n -x^2-x - (m+1)x+n (m+1)x+(m+1) - n-m-1
Mà \(A\left(x\right):\left(x+1\right)\)dư 6\(\Rightarrow n-m-1=6\)
\(\Rightarrow n-m=7\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}n+m=3\\n-m=7\end{cases}\Rightarrow\hept{\begin{cases}n=5\\m=-2\end{cases}}}\)
Vậy n=5 và m=-2
Áp dụng định lý Bezout ta có:
\(A\left(x\right)\)chia x-1 dư 4 \(\Rightarrow A\left(1\right)=4\)
\(\Rightarrow1+m+n=4\)
\(\Rightarrow m+n=3\left(1\right)\)
\(A\left(x\right)\)chia x+1 dư 6 \(\Rightarrow A\left(-1\right)=6\)
\(\Rightarrow-1-m+n=6\)
\(\Rightarrow-m+n=7\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}m+n=3\\-m+n=7\end{cases}\Rightarrow}\hept{\begin{cases}n=5\\m=-2\end{cases}}\)
Vậy n=5 và m=-2
1,n ( 2n - 3 ) - 2n (n + 1)
= 2n^2 - 3n - 2n^2 - 2n
= -5n chia hết cho 5 với mọi n
=> ĐPCM
2,( n- 1)(n + 4) - ( n - 4 )( n + 1)
= n^2 - n + 4n - 4 - ( n^2 - 4n + n - 4 )
= n^2 + 3n - 4 - n^2 + 3n + 4
= 6n chia hết cho 6 với mọi n thuộc Z
=> ĐPCM
cho biểu thức
a. A = 3/n+2 (n thuộc z, n khác 2). Tìm n sao cho n thuộc A.
b. B= -5/n-1n(n thuộc z, n khác 1). Tìm n sao cho n thuộc B
Lời giải:
$\frac{1}{m}+\frac{n}{6}=\frac{1}{2}$
$\Rightarrow \frac{mn+6}{6m}=\frac{1}{2}=\frac{3m}{6m}$
$\Rightarrow mn+6=3m$
$\Rightarrow m(n-3)=-6$
Do $m,n$ nguyên nên ta xét các TH sau:
TH1: $m=1, n-3=-6\Rightarrow m=1; n=3$
TH2: $m=-1, n-3=6\Rightarrow m=-1; n=9$
TH3: $m=2, n-3=-3\Rightarrow m=2; n=0$
TH4: $m=-2, n-3=3\Rightarrow m=-2; n=6$
TH5: $m=3, n-3=-2\Rightarrow m=3; n=1$
TH6: $m=-3, n-3=2\Rightarrow m=-3; n=5$
TH7: $m=6, n-3=-1\Rightarrow m=6; n=2$
TH8: $m=-6, n-3=1\Rightarrow m=-6; n=4$