K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

cách 2 nếu chưa học bezout

x^3 +mx+n x-1 x^2+x+(m+1) x^3-x^2 - x^2+mx+n x^2-x - (m+1)x+n (m+1)x-(m+1) - n+m+1

Mà \(A\left(x\right):\left(x-1\right)\)dư 4\(\Rightarrow m+n+1=4\)

                                                 \(\Rightarrow m+n=3\left(1\right)\)

x^3 +mx+n x+1 x^2-x+(m+1) x^3+x^2 - -x^2+mx+n -x^2-x - (m+1)x+n (m+1)x+(m+1) - n-m-1

Mà \(A\left(x\right):\left(x+1\right)\)dư 6\(\Rightarrow n-m-1=6\)

                                               \(\Rightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}n+m=3\\n-m=7\end{cases}\Rightarrow\hept{\begin{cases}n=5\\m=-2\end{cases}}}\)

Vậy n=5 và m=-2

22 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(A\left(x\right)\)chia x-1 dư 4 \(\Rightarrow A\left(1\right)=4\)

                                    \(\Rightarrow1+m+n=4\)

                                     \(\Rightarrow m+n=3\left(1\right)\)

\(A\left(x\right)\)chia x+1 dư 6 \(\Rightarrow A\left(-1\right)=6\)

                                       \(\Rightarrow-1-m+n=6\)

                                      \(\Rightarrow-m+n=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}m+n=3\\-m+n=7\end{cases}\Rightarrow}\hept{\begin{cases}n=5\\m=-2\end{cases}}\)

Vậy n=5 và m=-2 

15 tháng 7 2015

1,n ( 2n - 3 ) - 2n (n + 1)

= 2n^2 - 3n - 2n^2 - 2n

= -5n chia hết cho 5 với mọi n 

=> ĐPCM

2,( n- 1)(n + 4) - ( n - 4 )( n + 1)

= n^2 - n +  4n - 4 - ( n^2 - 4n + n - 4 )

= n^2 + 3n - 4 - n^2 + 3n + 4 

= 6n chia hết cho 6 với mọi  n thuộc Z 

=> ĐPCM

16 tháng 2 2019

Đề bài câu 2 là gì thế bạn????

16 tháng 2 2019

cho biểu thức

a. A = 3/n+2 (n thuộc z, n khác 2). Tìm n sao cho n thuộc A.

b. B= -5/n-1n(n thuộc z, n khác 1). Tìm n sao cho n thuộc B

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:

$\frac{1}{m}+\frac{n}{6}=\frac{1}{2}$

$\Rightarrow \frac{mn+6}{6m}=\frac{1}{2}=\frac{3m}{6m}$

$\Rightarrow mn+6=3m$

$\Rightarrow m(n-3)=-6$

Do $m,n$ nguyên nên ta xét các TH sau:

TH1: $m=1, n-3=-6\Rightarrow m=1; n=3$

TH2: $m=-1, n-3=6\Rightarrow m=-1; n=9$

TH3: $m=2, n-3=-3\Rightarrow m=2; n=0$

TH4: $m=-2, n-3=3\Rightarrow m=-2; n=6$

TH5: $m=3, n-3=-2\Rightarrow m=3; n=1$

TH6: $m=-3, n-3=2\Rightarrow m=-3; n=5$

TH7: $m=6, n-3=-1\Rightarrow m=6; n=2$

TH8: $m=-6, n-3=1\Rightarrow m=-6; n=4$