K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Đặt M=\(\frac{A}{B}\)

A=1+2+22+23+.....+22012

2A=2+22+23+......+22013

2A-A=(2+22+23+....+22013) - (1+2+22+.....+22012)

A=22013 - 1

B=22014-2

B=2.(22013-1)

=>M=\(\frac{2^{2013}-1}{2.\left(2^{2013}-1\right)}\)=\(\frac{1}{2}\)

19 tháng 8 2017

Đặt phân thức trên là D

=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)

=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)

=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)

=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)

=> D=2015

13 tháng 6 2020

UwU

ư uwsuuuuuuuuuuuu kimochiiiiiiiiiiiiiiiiiiii

đùa thôi đáp án: 2015 nha bn

ư ư wsuuuuuuuuuuuuuuuuuuuuuuuuuu kimmmmmooooochiiiiiiiiiii

À quên nhớ FOLOW CHO TUI NHA!

18 tháng 2 2016

Lên mạng xem quy tắc nhé

18 tháng 2 2016

Lên mạng xem nhé

24 tháng 6 2017

(50-1):1+1=50 số

=(50-49)+(48-47)+...+(4-3)+(2-1). Ta có 25 cặp số

=1+1+1+....+1

=1.25

=25

24 tháng 6 2017

vậy còn phần B bạn ơi giải lun cho mk đi 

18 tháng 2 2016

1+(-2)+3+(-4)+.....+(-19)+20=[1+(-2)]+[3+(-4)]+....+[(-19)+20]= (-1)+(-1)+....+(1)  (có 10 thừa số -1)

                                                                                       =(-1).10= -10

3 tháng 5 2017

H = 2012 - 1 - ( \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+99}\))
   = 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2}\)
   = 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\))
   = 2011 - 2.( \(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\))
   = 2011 - 2.(\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
   = 2011 - 2.( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))
   = 2011 - 2.(\(\frac{1}{2}-\frac{1}{100}\)) = 2011 - 2.\(\frac{49}{100}\)= 2011 - \(\frac{49}{50}\)\(\frac{100501}{50}\)

3 tháng 5 2017

\(H=2012-\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\right)\)

\(=2012-\left(1+\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{99\left(99+1\right):2}\right)\)

\(=2012-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)

\(=2012-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2}{99.100}\right)\)

\(=2012-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2012-2\left(1-\frac{1}{100}\right)\)

\(=2012-2\cdot\frac{99}{100}\)

\(=2012-\frac{99}{50}\)

\(=\frac{100501}{50}\)