K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10

Đề hiển thị lỗi. Bạn xem lại nhé. 

7 tháng 7 2017

Gọi 5 số tự nhiên liên tiếp là \(a;a+1;a+2;a+3;a+4\)

\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)luôn luôn chia hết cho 5 (cái này bn tự chứng minh) (*)

Và nó cúng chia hết cho 6 do :

\(a\left(a+1\right)\)luôn luôn chia hết cho 2 (do 2 số tự nhiên liên tiếp lun chia hết cho 2)  \(\left(1\right)\)

\(a\left(a+1\right)\left(a+2\right)\)luôn luôn chia hết cho 3 (so 3 só tự nhiên liên típ lun chia hết cho 3) \(\left(2\right)\)

Mà \(ƯCLN\left(2;3\right)=1\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\) tích trên chia hết cho \(2.3=6\) (*)

Mà 5,6 nguyên tố cùng nhau

Từ (*) + (**) = > tích trên chia hết cho \(5.6=30\)

7 tháng 7 2017

Gọi số đầu tiên là a, ta có các số tiếp theo là : a + 1; a + 2; a + 3; a + 4.

→ Trong 5 số tự nhiên này luôn tồn tại một số chia hết cho 2 và 3 → tích đó chia hết cho : 2 . 3 = 6 

→ Trong 5 số tự nhiên này luôn tồn tại một số chia hết cho 5 → tích đó chia hết cho 5 

→ Tích đó chia hết cho : 5 . 6 = 30 → ĐPCM

~ Chúc học tốt ~ 

Ai ngang qua xin để lại 1 L - I - K - E \(☺\)

Thảo Nguyễn

Trong 5 số tự nhiên liến tiếp chắc chắn có 1 số chia hết cho 2 (1)

Trong 5 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3 (2)

Và trong 5 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 5 (3)

TỪ (1) ;  (2) và (3)=> Tích 5 số tự nhiên liên tiếp chia hết cho 2 x 3 x 5=30 

30 tháng 7 2015

VD:1x2x3x4x5=120

Thì 120 chia hết cho 30

Vậy kết luận tích 5 số tự nhiên liên tiếp luôn luôn chia hết cho 30

30 tháng 7 2015

nguyễn trung hiếu:Giải thích như cậu thì bọn lớp 4 nó cũng làm đc

20 tháng 12 2015

Có 1 số chia hết cho 2

Có 1 số chia hết cho 3

Có 1 số chia hết cho 5

Vì UCLN(2;3;5) = 1

< = > Tích của chúng chia hết cho 2.3.5 = 30 (đpcm) 

20 tháng 12 2015

Số đó chia hết cho 2 ;3 và 5 

Vì ƯCLN(2;3;5)=1

tích chúng chia hết cho cả 2;3;5=30

suy ra ĐPCM

13 tháng 10 2015

 

Gọi 5 số tự nhiên liên tiếp a, a+1, a+2, a+3, a+4
=> a(a+1)(a+2)(a+3)(a+4) luôn chia hết cho 5 
nó cũng chia hết cho sáu vì 
a(a+1) chia hết cho 2 (1)
a(a+1)(a+2)chia hết cho 3 (2)
Từ 1 và 2 => tích đó chia hết cho sáu vì (2,3)=1 .(**)
từ * và ** => tích đó chia hết cho 30 vì (5,6)=1.

5 tháng 7 2015

 Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Khi đó đặt A=a(a+1)(a+2)(a+3)(a+4)
Vì trong 5 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3.
Mà (2,3)=1 nên A chia hết cho 6.

Trong 5 số tự nhiên Liên tiếp luôn Tồn tại một số chia hết cho 5, nên A chia hết cho 5.
Mà (5,6)=1 nên A chia hết cho 30.

Gọi 5 số tự nhiên liên tiếp a, a+1, a+2, a+3, a+4
=> a(a+1)(a+2)(a+3)(a+4) luôn chia hết cho 5 
nó cũng chia hết cho sáu vì 
a(a+1) chia hết cho 2 (1)
a(a+1)(a+2)chia hết cho 3 (2)
Từ 1 và 2 => tích đó chia hết cho sáu vì (2,3)=1 (**)
từ * và ** => tích đó chia hết cho 30 vì (5,6)=1