cho A=n+1/n+3
a/tìm n để A có giá trị nguyên
b/Tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) để A có giá trị nguyên
=>n+1 chia hết n-3
=>(n-3)+4 chia hết n-3
=>4 chia hết n-3
=>n-3\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){4,2,5,1,7,-1}
b) gọi d là UCLN (n+1;n-3)
<=>2n+1;2n-3 chia hết d
=>1 chia hết cho d
=>d=1=> n=1
a,ta có: A=n+1/n-3=n-3+4/n-3=(n-3)/n-3+4/n-3=1+4/n-3
Để A nguyên thì 4/n-3 phải nguyên =>4chia hết cho n-3
=>n-3 thuộc Ư(4)=[1;-1;2;-2;4;-4] tự tính tiếp
a ; Để A có giá trị nguyên thì:
n-5:n+7
(n-5)-(n+7):n+7
-12:n+7
a, \(A=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
A có giá trị nguyên \(\Leftrightarrow n+1\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
b, A tối giản \(\Leftrightarrow(n+1;n+5)\Leftrightarrow(n+1;6)=1\)
\(\Leftrightarrow(n+1)\)không chia hết cho 2 và \((n+1)\)không chia hết cho 3
\(\Leftrightarrow n\ne2k-1\)và \(n\ne3k-1(k\inℤ)\)
P/S : Hoq chắc :>
Có : \(\frac{n-5}{n+1}=\frac{\left(n+1\right)-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)
Để \(1-\frac{6}{n+1}\in Z\Leftrightarrow\frac{6}{n+1}\in Z\)
=> n + 1 thuộc Ư 6 => n + 1 = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
=> n = { - 7 ; - 4 ; - 3 ; - 2 ; 0 ; 1 ; 2 ; 5 }
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
a) \(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Vậy 4 chia hết cho n - 3.
n - 3 lần lượt có các giá trị là: 1;2;4;-1;-2;-4
Nên n lần lượt có các giá trị là: -1;1;2;4;5;7