2) Cho 0 < x < y và 2x2 + 2y2 = 5xy. Tính giá trị của P = (2012x + 2013y) / (3x - 2y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-5xy+2y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)
Mà \(y>x>0\Rightarrow y=2x\)
\(\Rightarrow\frac{2012x+2013y}{3x-2y}=\frac{2012x+2013.2x}{3x-2.2x}=-6038\)
2x2 + 2y2 = 5xy
=> 2x2 + 2y2 - 5xy = 0
=> (x - 2y)(2x - y) = 0
x = 2y (loại)
y = 2x
E = \(\dfrac{x+2x}{x-2x}\)=-3
Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)
Từ giả thiết ta có:
\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x+y=2\)
Do đó:
\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)
\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)
\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
Ta có:
\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)
\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)
\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)
Đáp án B.
Ta có 4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y
⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .
Suy ra x y ≤ x + y 2 2 = 1
Khi đó
P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y
≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y
= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18
Vậy Pmax = 18 khi x = y = 1.
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
Có \(2x^2+2y^2=5xy\)
\(\Leftrightarrow2x^2-2y^2-5xy=0\)
\(\Leftrightarrow2x^2-4xy-xy+2y^2=0\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)
TH1: Với \(x-2y=0\) hay \(x=2y\) thì:
\(E=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\) ( loại do \(0< x< y\) nên \(E=\dfrac{x+y}{x-y}< 0\) )
TH2: Với \(2x-y=0\) hay \(2x=y\) thì:
\(E=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\left(tm\right)\)
Vậy \(E=-3\)
Lời giải:
$2x^2+2y^2=5xy$
$\Leftrightarrow 2x^2-5xy+2y^2=0$
$\Leftrightarrow (2x-y)(x-2y)=0$
$\Leftrightarrow 2x=y$ hoặc $x=2y$
Do $0< x< y$ nên $2x=y$
Khi đó: \(P=\frac{2012x+2013y}{3x-2y}=\frac{2012x+2013.2x}{3x-2.2x}\\ =\frac{6038x}{-x}=-6038\)