CMR: a) 101994 +2 chia hết cho 3
b) (71968)1970-(368)1970 chia hết cho 10
giúp minh với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu ngoặc đó là dấu nhân à ? Nếu vậy thì:
71968.1970 - 368.1970 = 1970.(71968 - 368) = 1970.71600 tận cùng là : 1 + 2 = 3 (chữ số 0)
(vì 1970,71600 lần lượt có 1;2 chữ số 0 tận cùng).Vậy nên hiệu trên chia hết cho 1000
Nếu muốn CM chia hết cho 10 thì dễ thôi : Thấy rằng số bị trừ,số trừ tận cùng là 0 vì 1 thừa số tận cùng là 0.Do đó nên hiệu tận cùng là 0 nên chia hết cho 10
b ) B = 5 + 52 + ... + 57 . 58
= ( 5 + 52 ) + ... + ( 57 . 58 )
= 5 . ( 1 + 5 ) + ... + 57 . ( 1 + 5 )
= 5 . 6 + ... + 57 . 6
= 6 . ( 5 + ... + 57 ) \(⋮\)6
a ) 53! - 51!
= 51! . ( 52 . 53 - 1 )
= 51! . 2755
mà 2755 \(⋮\)29 => 51! . 2755
Vậy 53! - 51! \(⋮\)29
Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:
S = a(1 - r^n)/(1 - r),
trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.
Áp dụng công thức trên vào bài toán của chúng ta, ta có:
a = 5, r = 5 và n = 99.
Thay các giá trị vào, ta có:
S = 5(1 - 5^99)/(1 - 5).
Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.
Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).
Áp dụng tính chất này vào công thức trên, ta có:
S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).
Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.
Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).
Áp dụng tính chất này vào bài toán của chúng ta, ta có:
5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).
Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:
4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).
Do đó, ta có:
4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).
Vậy, chúng ta có:
S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).
Kết quả là tổng A chia hết cho 31.
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
a; a - b ⋮ 6
a - b + 12b ⋮ 6
a + 11b ⋮ 6 (đpcm)
b; a - b ⋮ 6
a - b - 12a ⋮ 6
-11a - b ⋮ 6
-(11a + b) ⋮ 6
11a + b ⋮ 6 (đpcm)
a. A= 2+22+23+......+260
= 2+ (22+23)+(24+25)+......+(258+259)+260
=2+2(2+22)+23(2+22)+......+257(2+22)+260
=2+(2+22)(2+23......+257)+260
=2+ 6(2+2^3+......+2^57)+260 => cả 23 số hạng đều chia hết cho 2 => tổng chia hết cho 2 => a chia hết cho 2
b. A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.........+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^57(1+2+2^2+2^3)
=2.15 +2^5.15+...........+2^57.15 = 15 (2+2^5+...........+2^57) => 15 chia hết cho 3 => A chia hết cho 3
k đúng cho mình nha!!!!
a. Do 2; 22; 23; ...; 260 chia hết cho 2
=> A chia hết cho 2 ( đpcm)
b. A = 2 + 22 + 23 + ... + 260 ( có 60 số; 60 chia hết cho 2)
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
A = 2.3 + 23.3 + ... + 259.3
A = 3.(2 + 23 + ... + 259) chia hết cho 3
=> A chia hết cho 3 ( đpcm)
a/ 101994 = 1000 .....0
101994 + 2 có tổng các chữ số là= 1 + 0 + 0 + ...+ 0 + 2 = 3 chia hết cho 3
vậy 101994 + 2 chia hết cho 3
a)101994=100..0(1994 chữ số 0)
tổng các chữ số của số 101994là 1+0+0+0+...+0(1994 chữ số 0)=1
tổng các chữ số của số 101994và 2 là 1+2=3
=>101994+2