K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

1.

\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)

\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)

b.

\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)

27 tháng 7 2021

cho em hỏi làm sao mà từ đề ra được ạ

b) \(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

c)\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

11 tháng 10 2023

loading...  loading...  

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)

NV
28 tháng 7 2021

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
28 tháng 7 2021

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

12 tháng 8 2017

2cos2x+7sin22x=0

Bạn áp dung CT: sina=2sina.cosa là ra

pt<=>2cos2x+7.(2.sinx.cosx)2=0

<=>2cos2x+7.4.sin2x.cos2x=0

<=>2cos2x+28sin2x.cos2x=0

<=>2cos2x.(1+14sin2x)=0

<=>\(\left[{}\begin{matrix}cosx=0\\sin^2x=\dfrac{-1}{14}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\vn\end{matrix}\right.\) (k thuộc Z)

12 tháng 8 2017

2cosx(1-sinx)+\(\sqrt{3}\)cos2x=0

<=>2cosx-2sinx.cosx+\(\sqrt{3}\)cos2x=0

<=>2cosx-sin2x+\(\sqrt{3}\)cos2x=0 (2sinx.cosx=sin2x)

<=>2cosx=sin2x-\(\sqrt{3}\)cos2x (*)

Tới đây bạn xem sách giáo khoa trang 35 nhé, người ta hướng dẫn kĩ lắm rồi đấy hihi!

(*)<=>2cosx=2sin(2x-\(\dfrac{\Pi}{3}\))

<=>cosx=sin(2x-\(\dfrac{\Pi}{3}\))

Tới đây bạn áp dung công thức Phụ Chéo (hình như cuối năm lớp 10 học rồi):

TỔng quát: cosx=sin(\(\dfrac{\Pi}{2}\)-x)

pt<=>sin(\(\dfrac{\Pi}{2}\)-x)=sin(2x-\(\dfrac{\Pi}{3}\))

<=>\(\left[{}\begin{matrix}\dfrac{\Pi}{2}-x=2x-\dfrac{\Pi}{3}\\\dfrac{\Pi}{2}-x=\Pi-2x+\dfrac{\Pi}{3}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=\dfrac{5\Pi}{18}+\dfrac{k2\Pi}{3}\\x=\dfrac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)(k thuộc Z)

Chúc bạn học tốt!

Có gì bạn vào tìm kiếm, gõ"0941487990" kết bạn facebook, inbox có gì giúp dc thì mình giúp cho!

a: cos5x=-5

mà -1<=cos5x<=1

nên \(x\in\varnothing\)

b: 2*cosx-1=0

=>2*cosx=1

=>cosx=1/2

=>x=pi/3+k2pi hoặc x=-pi/3+k2pi

c: -5*cos(x+pi/3)=0

=>cos(x+pi/3)=0

=>x+pi/3=pi/2+kpi

=>x=pi/6+kpi

d: cos4x=cos(5/12pi)

=>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi

=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2

e: cos^2x=1

=>sin^2x=0

=>sin x=0

=>x=kpi

24 tháng 10 2021

a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)

...

24 tháng 10 2021

b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)

\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

30 tháng 6 2021

\(-1\le cosx\le1\)

 

30 tháng 6 2021

Vô nghiệm nha a, \(cos\ge-1\)